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PME came into existence at the Third International Congress on Mathematical Education
(ICME-3) in Karlsrithe, Germany in 1976. It is affiliated with the International Commission for
Mathematical Instruction. PME-NA is the North American Chapter of the International Group
of Psychology of Mathematics Education. The first PME-NA conference was held in Evanston,
Mlinois in 1979.

The major goals of the International Group and the North American Chapter are:

1. To promote international contacts and the exchange of scientific information in the
psychology of mathematics education;

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the
cooperation of psychologists, mathematicians, and mathematics teachers;

3. To further a deeper and better understanding of the psychological aspects of teaching and
learning mathematics and the implications thereof.

Membership is open to people involved in active research consistent with PME-NA’s aims or
professionally interested in the results of such research. Membership is open on an annual basis
and depends on payment of dues for the current year. Membership fees for PME-NA (but not
PME International) are included in the conference fee each year. If you are unable to attend the
conference but want to join or renew your membership, go to the PME-NA website at
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and
click on “Membership” at the left of the screen.
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Welcome

On behalf of the 2017 PME-NA Steering Committee, the 2017 PME-NA Local Organizing
Committee, and the Hoosier Association of Mathematics Teacher Educators (HAMTE), we
welcome you to the 39th Annual Meeting of the International Group for the Psychology of
Mathematics Education - North American Chapter held at the Crowne Plaza Indianapolis
Downtown Union Station in Indianapolis, Indiana.

The theme of this year’s conference is Synergy at the Crossroads: Future Directions for Theory,
Research, and Practice. The metaphor of crossroads was inspired by the conference venue - the
historic Indianapolis Union Station, as well as by the State motto, a reference to how Indiana is
connected to the rest of the United States. PME-NA 39 includes research presentations,
discussion, and reflection focusing on four driving questions connecting to the metaphor of
crossroads: 1) What have we learned from the routes we have traversed, what are potential routes
for mathematics education research in the future, and what considerations are relevant as we
make choices about future directions in mathematics education? 2) How do we address issues of
access and equity within mathematics education today? 3) How can we lay the groundwork for
future crossroads or intersections between theory, research, and practice? and 4) What barriers
within research traditions, educational policy, and teaching practice impede researchers’,
students' and teachers' success and how can we work to overcome these barriers?

Rochelle Gutiérrez will present the opening plenary talk on Thursday evening, Living
Mathematx: Towards a Vision for the Future, into which she brings ideas from
ethnomathematics, postcolonial theory, aesthetics, biology, and Indigenous knowledge in order
to propose a new vision for practicing mathematics. Edd Taylor will serve as discussant for the
talk. In the Friday afternoon plenary session, Les Steffe will present several crucial radical
constructivist research programs to argue that rather than repeat attempts to make wholesale
changes in mathematics education based on mathematical knowledge for adults, what is needed
is to construct mathematics curricula for children that is based on the mathematics of children.
Two of Dr. Steffe’s former students, Erik Tillema and Amy Hackenberg, will serve as discussants,
providing varied perspectives on the continuation of his work. Saturday’s plenary session,
Elementary Mathematics Specialists: Ensuring the Intersection of Research and Practice will
include a historical overview by Maggie McGatha followed by a discussion panel composed of
Dionne Cross and Jane Mahan, facilitated by Sheryl Stump. A panel discussion of technology in
mathematics education with representatives from the three PME-NA member countries will
complete the plenaries on Sunday: Ana Isabel Sacristan (Digital Technologies in Mathematics
Classrooms: Barriers, Lessons and Focus On Teachers); Nathalie Sinclair (Crossroad Blues); and
Karen Hollebrands (A Framework to Guide the Development of a Teaching Mathematics with
Technology Massive Open Online Course for Educators [MOOC-ED]).

This year’s conference will be attended by about 550 researchers, faculty and graduate
students from around the world including the US, Mexico, Canada, Turkey, Australia, South
Korea, Malawi, and Iran. We received 529 submissions. The acceptance rate was 39% for
research reports as research reports, 57% for brief research reports as brief research reports, 78%
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for posters as posters, and 100% for working groups. The accepted proposals included 75
research reports, 142 brief research reports, 167 posters, and 13 working groups. Continuing the
efforts started at last year’s conference there will be some presentations in Spanish, as well as
simultaneous oral interpretation (from English to Spanish, and from Spanish to English) for
selected sessions.

We would like to thank the many people who generously volunteered their time over the past
year in preparation for this conference. This includes members of the PME-NA Local Organizing
Committee, the PME-NA Steering Committee, Purdue Conferences, strand leaders, proposal
authors and reviewers. We appreciate all of your hard work and dedication, and your
commitment to ensure a high-quality conference program. We also wish to thank the generous
financial support of the HAMTE member universities across Indiana.

Jill Newton
PME-NA 39 Conference Co-Chair PME-NA 39 Conference Co-Chair
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LIVING MATHEMATX: TOWARDS A VISION FOR THE FUTURE'

Rochelle Gutiérrez
University of Illinois at Urbana-Champaign
rgl @illinois.edu

This paper offers specific implications for teaching and learning and brings into conversation ideas
from ethnomathematics (including Western mathematics), postcolonial theory, aesthetics, biology,
and Indigenous knowledge in order to propose a new vision for practicing mathematics, what I call
mathematx. I build upon the work of sustainability in mathematics education and suggest we need to
think not only about more ethical ways of applying mathematics in teaching and learning but
question the very nature of mathematics, who does it, and how we are affected by that practice.

Keywords: Equity and Diversity, Instructional Activities and Practices

We need to be constantly considering the forms of mathematics and what they seek to deal with.
As society presents new demands, new technologies, new possibilities, we must ask ourselves
whether our current version of mathematics is adequate for dealing with the ignorance that we
have (Gutiérrez and Dixon-Roman, 2011, p. 32).

The ecology of knowledges enables us to have a much broader vision of what we do not know, as
well as what we do know, and also to be aware that what we do not know is our own ignorance,
not a general ignorance (Santos, 2007, p. 43).

We are all the product of our worldview—even scientists who claim pure objectivity...Science
and traditional knowledge may ask different questions and speak different languages, but they
may converge when both truly listen to the plants (Kimmerer, 2013, p.163, 165).

Everyday, we accumulate more evidence that humans are destroying the planet. We need only
look at the increasing levels of air pollution, climate change, destruction of the ozone layer, and the
elimination of various plant and animal species throughout the world to know that we cannot
continue with the forms of living we have come to consider “normal.” However, not until recently
has the public become aware that the effects will deeply impact us in our lifetime (Kolbert, 2015).
One might ask: what role(s) should mathematics play in stopping or slowing the rate of such
destruction of the environment? The field of mathematics might serve mainly to: describe the nature
of the global problem; offer excellent models for prediction; or provide efficient data analysis and
statistics for calculating risk. Mathematics might also offer something else altogether. In what way(s)
are current forms of mathematics teaching and learning consistent with the kinds of environmental
crises we face? Do we need to think differently about our relationship between mathematics, humans,
and the planet? And, if so, how?

In this article, I seek to bring into conversation ideas from ethnomathematics (including Western
mathematics), postcolonial theory, aesthetics, biology, and Indigenous knowledge in order to propose
a new vision for practicing mathematics, something I refer to as mathematx. I do so in order to
promote interaction between different knowledges, different ways of knowing, and different
knowers. I build upon the work of sustainability in mathematics education and suggest we need to
think not only about more ethical ways of applying mathematics in teaching and learning but
question the very nature of mathematics, who does it, and how we are affected by that practice. I
introduce the concepts of In Lak’ech, reciprocity, and Nepantla to suggest we learn from other-than-
human persons, which, in turn, may change our relationships with them. Along the way, I underscore
with examples from biology the potential limitations of current forms of mathematics for
understanding/interacting with our world and the potential benefits of considering other-than-human
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persons as having different knowledges to contribute. Finally, I suggest implications for teaching and
learning.

Identifying the Problem

The relationship between mathematics, humans, and the planet has been one steeped too long in
domination and destruction (O’Neil 2016; Martinez 2016). Due in large part to the way research is
funded, the field of mathematics is often in the service of warfare and economics (BooB-Bavnbek
and Hoyrup 2003; Gutiérrez 2013; Martinez 2016; O’Neil 2016; Porter 1995). With an emphasis on
quantifying, categorizing, and reducing complex and multi-layered relationships between persons to
mere abstractions, mathematics often supports a fallacy that modeling, big data, and software can
solve anything. Some might suggest there is nothing inherent in the practice of mathematics that
leads to domination; we simply need to follow more ethical practices in applying mathematics in the
world around us.

Highlighting this role of domination and arguing for a new form of teaching mathematics, Coles
and colleagues (2013) note,

The history of humanity’s relationship with the natural environment, at least in the West, can be
summarized in one word: domination. The natural environment has been seen as a source of food
and raw materials all to be placed in the service of human projects. Where the natural
environment gets in the way of such projects, we simply blast our way through... (p. 4)

In an attempt to change this relationship, Coles and colleagues suggest we begin by altering the
forms of teaching and the curriculum to which students are exposed. By situating mathematical
problems in contexts that relate to such issues as climate change, students will have the opportunity
to develop a new relationship to mathematics and new uses of mathematics in making life decisions.
That is, students can be encouraged to analyze real-world statistics of temperatures in different
regions to make conclusions about both the rates by which the climate is changing and the
probabilities that the climate will continue to change. In this way, students would also be allowed to
ponder such questions as what kind of mathematical information is necessary to address climate
change? What mathematics should the average citizen know in order to make informed decisions
about the consequences of their actions and the actions of others? Learning mathematics in real world
social and political contexts can help students see relationships between the decisions humans make
and the destruction of the planet, thereby urging them to take action to save the planet. In this way,
mathematics education can more clearly highlight the roles of ethics (e.g., Atweh 2013; Boylan
2016) and practicality as they relate to the practice of mathematics. Thus, shifting the curriculum to
more sociopolitical contexts (Gutiérrez 2010/2013"), what some would refer to as teaching
mathematics for social justice (Frankenstein 1990; 1995; Gutstein 2006), could broaden the service
of mathematics beyond economics and warfare.

However, attending to when and how mathematics is in the service of sustainability or ethics may
be a necessary but insufficient step towards new relationships between humans, mathematics, and the
planet (Gutiérrez, 2002). This, for me, has been one limitation of social justice mathematics (Gutstein
2003; 2006; 2007), as it tends to assume we will keep intact as “classical” what I refer to as
“dominant” mathematics rather than challenging whether that version or any single version should
remain central. In the social justice mathematics tradition, students are taught to use classical
mathematics as a tool to read and write the world, in order to develop their sociopolitical
consciousness and mathematical proficiencies. But, in general, the tool itself is not questioned.
Recognizing the limitations of using the master’s tools to dismantle the master’s house (Lorde 1984)
leads me to argue that we must also be willing to question and reconceptualize what counts as
mathematics in the first place, thereby taking up issues of epistemology and ontology.
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I am not alone in suggesting we need to reconsider our definitions of mathematics in light of our
current state of global crises. For example, Appelbaum (2016) suggests a different approach through
curriculum, where a key component is questioning what counts as mathematics.

..one key curriculum question that can no longer be pushed to the side is how very narrow,
Western, “rational” conceptions of what mathematics “is” have continued to be wielded
implicitly as tools of epistemicide, obliterating alternatlve epistemologies of number, size,
quantity, possibility, shape, algorithmic problem solving, analogic representation, and other
extended components of mathematical thinking and living. (p. 5)

Similarly, Boylan (2016) considers the role of mathematics in relation to the planet and argues,

An ecological ethics calls not only for an environmentally informed critical mathematics
education but also for a critique of the social construction of mathematics itself as separate and
disconnected from the earth (p. 9).

The Program Ethnomathematics offers a useful starting point for broadening the definition of
mathematics, something I will discuss later in this article.

Not only must we: a) be conscious of the ways mathematics can dominate and b) constantly
question what counts as mathematics and who decides, we must also c) think about how we, as living
beings, practice mathematics as we interact with others and ourselves. As we begin to reimagine
mathematics, we have the opportunity to reimagine the mathematician—who is considered a
mathematician as well as how are mathematicians influenced by the mathematics they do? Many of
the current efforts to reconsider mathematics and its role in our global society tend to rely upon a
utilitarian version of mathematics that allows us to better survive on this planet. [ am suggesting that
a form that describes moving through the world and relates to all living beings is more likely to
change our relationships with each other in this universe or in others. We need a definition that
acknowledges mathematics as a verb and how that practice relates to our bodies, minds, and
intentions. For that, we might consider our philosophical stance.

Much of the philosophical research produced in mathematics education centers on European
thinkers. For example, we are abundant with theories of postmodernism, poststructuralism, and
psychoanalysis that regularly draw upon such writers as Deleuze and Guattari, Ranciere, Foucault,
Lacan, Badiou, Derrida, and Freud. As a Chicanx scholar, a cis gender female with Raramuri™ roots,
I seek to decenter the field’s overreliance on Whitestream views. I use the term Chicanx (as opposed
to Chicano, Chicana/o, or Chican@) as a sign of solidarity with people who identify as lesbian, gay,
bisexual, transgender, queer, questioning, intersexual, asexual, and ‘[wo—spiritiV (LGBTQIAZ2S).
Chicanx represents both a decentering of the patriarchal nature of the Spanish language whereby
groups of men and women are normally referred to with the “0” (male) ending as well as a rejection
of the gender binary and an acceptance of gender fluidity. The “x” signifies a variable to represent
any gender form. My choice to use this term reflects my respect for how people choose to name
themselves.

In this article, I introduce three Indigenous concepts that have guided my work over the years—
In Lak’ech, Nepantla, and reciprocity—and suggest they can serve as guiding principles of a new
practice of mathematics.

Indigenous Epistemologies
Why privilege Indigenous concepts when considering the relationship between mathematics,
humans, and the planet? The answer to that question lies partly in the way (Western) mathematics is
viewed as universal (being able to explain everything in reality) and highly valued in society. When
challenges of discontinuity or undecidability arise, mathematicians often protect the universal view
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by suggesting that mathematics still holds true if we simply begin with different axioms (Barrow
1992). Yet, no knowledge could fully describe or attend to our universe and our relations with/in it. If
we look to the role that Aboriginal” knowledges have played in the reading of signs of distress from
the land (i.e., predicting the global crises we face), the preservation of biodiversity, and the role of
survival in general, we see the limits of Western mathematics/science practices as a means for
intervention (Berkes et al. 2000; Brayboy and Maughan 2009; Cajete 1999; Deloria 1979; Gonzalez
2001; Heinrich, et al. 1998; LaDuke 1994; Little Bear 2000; 2009; Tallbear 2013; Watson-Verran
and Turnbull 1995). I claim neither that all Western thought is colonizing/hegemonic nor that all
Indigenous thought does not have the ability to dominate. However, modern Western thinking has
been hegemonic in ways that erase Indigenous thought. In this way, I use the term “Western” to refer
to the modern version that has tended to colonize and “Indigenous” or “Aboriginal” to refer to the
version that has tended to be erased throughout history.

Acknowledging the limits of Western mathematics is not to discount the value of mathematical
knowledge in other realms. However, such limitations suggest that, in contrast to the global push to
get more students to enter Science, Technology, Engineering, and Mathematics (STEM) fields in
order to deal with the complexity and challenges in our world, we cannot fully address our problems
through a reliance on Western mathematics/science.

Santos (2007) suggests that the problem of domination may lie not in which knowledge is
authoritative, but rather in our overreliance on any single knowledge as authority. As such, he
suggests an epistemology of knowledges, underscoring the view that all knowledge is legitimate,
partial, and interdependent. In fact, with respect to ignorance, learners do not just lack knowledge,
they have “misknowledges” (i.e., stereotypes, incorrect knowledge) about others (Kumashiro 2001).
And, those misknowledges may not easily be replaced by the introduction of new knowledge because
desconocimiento (ignorance) can be a “refusal to know” when what is new disrupts what was
previously believed to be true (Anzaldaa 2000).

Yet, from a postcolonial perspective, it is important to unlearn what one thinks one knows, both
to recognize a form of epistemological arrogance (thinking that one’s ways of knowing are superior
to others’) and to learn to see oneself in relation to others (Andreotti, Ahenakew, and Cooper 2011).
Such a perspective acknowledges that our ignorance is our own, not a general form that cannot be
known or is not yet known (Santos 2007). That is, just as there is no unity of knowledge, there is no
unity of ignorance. Each of us has knowledge and ignorance that is, to a certain extent, unique.
Consistent with this epistemological pluralism, some scientists have argued against trying to develop
a theory of everything (Gleiser 2015).

Ecology of knowledges does not follow a single abstract universal hierarchy among knowledges.
Rather, it sees knowledge practices as context dependent. In that sense, it recognizes that different
knowledges can address our understanding and ability to relate to one another depending upon our
different purposes (e.g., the ways we aim to connect, the problems we seek to solve, the ways we
invite joy into our lives) (Little Bear 2009). For example, by seeking to be predictive, generalizable,
reductionist, and quantifiable in nature, Western perspectives tend to privilege knowledge as a form
of (re)presentation and explanation of reality (Aikenhead and Michell 2011). Yet, given the global
crises we face, we might be better served by knowledge as action—a form of intervention (Santos
2007; Andreotti 2011).

Given these different purposes, it is important to create inter-knowledges, whereby learning
another’s knowledge does not negate knowing one’s own knowledge (Santos 2007). In this way,
learning how other living beings perform mathematics does not eliminate what is known in terms of
academic mathematics. But, it does help us know what we do not know. Recognizing these inter-
knowledges can go a long way towards embodying humility and establishing the need for
responsibility, and therefore reciprocity, toward another, as opposed to for another (Spivak, 1987).
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While Santos is referring to an epistemology of knowledges that would include
scientific/mathematical versus social scientific, I am arguing that within mathematics, we might
acknowledge and value an epistemology of knowledges. That is, mathematically, we might come to
see that different ways of knowing, different knowers, and different forms of knowledge are all
legitimate, partial, and interdependent. Epistemological pluralism recognizes that there will be
tensions, contradictions, and politics in translating Indigenous knowledges into Western
categories/languages (Andreotti, et al. 2011). As such, an epistemology of knowledges is
destabilizing because it interrogates the politics of knowledge and, unlike Western knowledge, does
not presume causal outcomes—that is, that we can know the potential from any given actual.
Therefore, the production of knowledge is an ongoing process that is not cumulative but relational.

Centering Indigenous Knowledges

To be clear, there is no universal “Indigenous worldview.” Within the US, alone, there are 567
peoples federally recognized as American Indian and many more that are not recognized. Within
Mgéxico, there are 62 peoples recognized as Indigenous, comprising 13 percent of the nation’s
population. Within Canada, there are 634 peoples recognized as First Nations, plus peoples who are
Métis and Inuit, all accounting for 5.6 percent of the nation’s population. And, these populations
cover only North America, not the globe. The use of particular languages and ties to particular lands
create unique views held by Aboriginal peoples throughout the world and by individuals within those
groups. And, many Aboriginal writers refuse to refer to themselves as Indigenous, Indian, or First
Nations, as those categories are reflections of a colonizing history that blurs specificity. Even so, at
times, “strategic essentialism” (Spivak 1987) is important for joining peoples and advancing common
resistance tactics. As such, [ speak of commonalities across the range of Indigenous knowledges. The
perspectives I share are my view and do not necessarily reflect the views of others.

Indigenous knowledges recognize that we are part of a system of intelligent and sentient beings,
also referred to as persons, with interconnected spirits, including rocks and bodies of water. Plants,
for example, have lived on this planet for millions of years before humans. In that sense, plants are
our older brothers/sisters and have developed ways of efficiently using space, relating with other
living beings, and sustaining life not just for themselves but for others, often with few resources at
any given moment. They have been able to withstand long droughts, communicate about impending
dangers, and collaborate in order to protect others in the community in ways that appear to be selfless
acts. They have much to teach us; and we may have something to teach them. Breaking with a
human/non-human binary is consistent with queer theory, which recognizes the violence that is
justified when some are viewed to be more human than others (Chen 2012).

Our choice to destroy the planet to serve our immediate/capitalistic/technology needs is a form of
settler colonialism that perpetuates violence. That is, because a Western worldview does not consider
plants, animals, and rocks as living beings of equal value with the same rights to this universe as
humans, the result is that plants, animals and rocks suffer the same treatment as Indigenous peoples
have endured throughout time. For example, like American Indians who were stripped of their lands
and communities and forced to live in boarding schools, plants are yanked from their families and
forced to assimilate into Western ways of doing things (e.g., to become suburban gardens). By
respecting animals, plants, and even rocks as living beings, we can avoid some of the human/material
binary that has plagued the sciences in the past.

By referring to humans as a young species, I do not mean to imply a sense of posthumanism or
transhumanism. That is, [ am not looking to make humans better or into a fuller version of
themselves by combining with technology, fiction, or art (Haraway 1990; but also Chela Sandoval’s
extension). An Indigenous perspective, for me, seeks not to transform humans into another form of
being; rather it serves to help us recognize our place in this world as the younger brothers/sisters of
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animals, plants, and rocks who have much to teach us about making sense of and remaining
connected to this planet and possibly other planets. In this sense, by changing our world view—how
we move through this world and possibly into others—we will necessarily change ourselves, but not
in a way that is separate from other living beings, not in a way that is necessarily tied to technology.
There may be things we cannot yet access or understand because we are a young species. Other
persons may have ways of accessing information that can be helpful for us.

While our Elders have long spoken of the sentient capabilities of plants and rocks and of the
collective spirit they/we share, only recently have modern scientists begun to acknowledge that claim
with experiments that prove this to be the case, suggesting trees are sentient and intelligent (Haskill
2017; Jahren 2017; Wohlleben 2016). For example, tracing isotopes of carbon dioxide gas offered to
sample trees shows they turn that carbon dioxide into sugars that travel down through the trunk and
use a complex system of roots, fungi, and mycelium to share that resource with other trees nearby,
even trees of a different species (Simard et al. 2012). Similarly, when a tree is injured or attacked by
pests, it is able to communicate by way of pheromones to nearby trees to tell them to start changing
the chemistry of their leaves to be unfavorable to the intruder (Wohlleben 2016). And, mother trees
are able to both reduce their root system to make room for their offspring as well as send defense
signals through their mycorrhizal network to increase the resistance of their offspring to future stress
(Teste, et al. 2009).

Beyond embracing the intelligence and sentience of other living beings, Indigenous
epistemologies connect place, body, spirit, and consciousness. They reflect understandings of land,
history, culture, identity relationships, and therefore, politics (Deloria 1979). Many Indigenous
knowledges have been developed with roots in survivance; that is, not surviving in the colonialist
depiction of escaping catastrophe or being positioned as victims, but resisting dominance in a way
that renews Indigenous knowledges that are particular and have always been present (Vizenor 2008).
While there are many Indigenous concepts that could be fruitful to revisioning mathematics, I present
three that have been important in my upbringing. I do so in order to set the stage for an epistemology
of knowledges that can guide our practice of mathematics.

In Lak’ech

The Mayan definition of human being (huinik’lil) translates to “vibrant being” in recognition of
the idea that all human beings are part of a universal vibration (Arguelles 1987; Paredez 1964).
Acknowledging that all beings are connected, Mayan philosophy includes the important concept of
In Lak’ech woven into everyday thought and action. When a person meets another, they begin with
the saying In Lak’ech (You are the other me), to which the receiver responds with Ala K’in (I am the
other you). This greeting highlights for all persons (human and other-than-human) their connection
with each other and the need to protect each other. Consistent with Indigenous knowledge, I use the
terms “living beings” and “persons” interchangeably, as each term refers to all things living.

Seeing a version of oneself in other living beings or persons is a powerful reminder to move
through the world with compassion, gratitude, and interdependence. For me, In Lak’ech suggests that
if we look closely, we can see ourselves in others and others in us, but not in a way that implies an
erasure of our uniqueness, even while recognizing that uniqueness does not imply a sense of self
without others. To be clear, In Lak’ech does not translate to “I am you; You are me.” Seeing a
version of oneself in others and others in us is a kind of mirror, an affirmation; while the concept also
recognizes we are not exactly the same. In the same way that a mirror refracts light, produces words
that are backwards, and has imperfections from the glass, In Lak’ech reminds us that each person is
unique. In this sense, other persons also serve as a kind of window, a way of viewing another world,
another self, another (possibly better) you.
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Over time, Chicanx scholars have brought the concept of In Lak’ech into poems and theater as
reminders of how we should move through the world.

T eres mi otro yo.

You are my other me.

Si te hago dafio a ti,

If I do harm to you,

Me hago dafio a mi mismo.

I do harm to myself.

Si te amo y respeto,

If I love and respect you,

Me amo y respeto yo.

I love and respect myself. (Valdez and Paredez n.d.)

Through this poem and other writings (e.g., Valdez 1971), Valdez highlights the ways in which
Chicanx might relate to others in order to move with the cosmos. The meaning of In Lak’ech is
similar to the Lakota saying Mitakuye Oyasin “we are all related” (Cajete 1999 cited in Hatcher et al.
2009). The idea that we are all related can, in some ways, bring us joy, a simultaneous affirmation of
self and others. Building upon the idea that we are all interconnected, an Indigenous production of
knowledge to benefit others is in opposition to knowledge production as performance that benefits
mainly oneself and that is seen in most White institutions or places that value Western thought.
Brayboy and Maughan (2009) remind us,

Indigenous communities have long been aware of the ways that they know, come to know, and
produce knowledges, because in many instances knowledge is essential for cultural survival and
well-being. Indigenous Knowledges are processes and encapsulate a set of relationships rather
than a bounded concept, so entire lives represent and embody versions of IK (p. 3).

Reflecting these relationships, In Lak’ech focuses not on description of reality but on movement
through the world and metaphysics. By metaphysics, I simply mean a set of first principles by which
we make sense of the world around us (Deloria 1979).

Reciprocity

Extending the idea of In Lak’ech, the second concept upon which I draw is reciprocity. The
concept of reciprocity highlights the idea that different persons have different strengths and needs,
and thus must rely on others for what they lack. More than simply recognizing that reciprocity
enables persons to do things they could not otherwise do alone, it underscores a kind of ethic that is
valued in maintaining harmony of the cosmos. In this sense, reciprocity is not only the productive
thing to do, it is the right thing to do. Whereas In Lak’ech acknowledges the nature of the
relationship between self and others, reciprocity highlights the actions that should result.

As a botanist and a member of the Citizen Potawatomi Nation, Kimmerer (2013) weaves the
view of a scientist with an Indigenous view on the role of reciprocity and suggests that when we
honor other living beings (e.g., plants), it changes our relationships with them. She says,

When I speak of the gift of berries, I do not mean that Fragaria virginiana has been up all night
making a present just for me, strategizing to find exactly what I’d like on a summer morning. So
far as we know, that does not happen, but as a scientist [ am well aware of how little we do know.
The plant has in fact been up all night assembling little packets of sugar and seeds and fragrance
and color, because when it does so its evolutionary fitness is increased. When it is successful in
enticing an animal such as me to disperse its fruit, its genes for making yumminess are passed on
to ensuing generations with a higher frequency than those of the plant whose berries were
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inferior...what I mean is that our human relationship with strawberries is transformed by our
choice of perspective...when we view the world this way, strawberries and humans alike are
transformed. The relationship of gratitude and reciprocity thus developed can increase the
evolutionary fitness of both plant and animal. (p. 29-30)

Can we come to understand mathematics as a living practice that needs actors and can respond to
their needs? Are there already ways in which these concepts play into mathematics?

Kimmerer highlights how in the Thanksgiving Address, humans are reminded of the importance
of balance and harmony, “We have been given the duty to live in balance and harmony with each
other and all living things” (p. 107) and she asks the non-Native reader, “What would it be like to be
raised on gratitude, to speak to the natural world as a member of the democracy of species, to raise a
pledge of interdependence?” (her emphasis, p. 112)

This is very similar to Cajete’s notion of laws of interdependence. What might it look like to
view mathematics (what it is, how we practice it, who is considered a mathematician, what
knowledge we produce) as having a basis in interdependence? Kimmerer expands,

Cultures of gratitude must also be cultures of reciprocity. Each person, human or no, is bound to
every other in a reciprocal relationship. Just as all beings have a duty to me, I have a duty to
them. If an animal gives its life to feed me, I am in turn bound to support its life. If I receive a
stream’s gift of pure water, then I am responsible for returning a gift in kind. An integral part of a
human’s education is to know those duties and how to perform them. (Kimmerer, p. 114)

If we keep in mind our duties to others, might we think about the forms of mathematics we are
producing and practicing as well as how those forms impact other persons, not just ourselves or other
humans?

In describing the relationship between beans, corn, and squash, referred to collectively as Las
Tres Hermanas (the Three Sisters), Kimmerer highlights, for me, the particular way in which these
sisters perform mathematics.

The corn stands eight feet tall; rippling green ribbons of leaf curl away from the stem in every
direction to catch the sun. No leaf sits directly over the next, so that each can gather light without
shading the others. The bean twines around the corn stalk, weaving itself between the leaves of
corn, never interfering with their work. In the spaces where corn leaves are not, buds appear on
the vining bean and expand into outstretched leaves and clusters of fragrant flowers. The bean
leaves droop and are held close to the stem of the corn. Spread around the feet of the corn and
beans is a carpet of big broad squash leaves that intercept the light that falls among the pillars of
corn. Their layered spacing uses the light, a gift from the sun, efficiently, with no waste. The
organic symmetry of forms belongs together; the placement of every leaf, the harmony of shapes
speak their message. Respect one another, support one another, bring your gift to the world and
receive the gift of others, and there will be enough for all. (p. 131-132)

Phyllotaxis, the study of the ordered position of leaves on a stem, highlights the fact that many
plants grow in ways that mirror “Fibonacci*™ numbers and the ratios of two consecutive numbers
tend towards the golden ratio (Douady and Couder 1992). Interestingly, scientists who have studied
Las Tres Hermanas have documented that when grown together, they out-produce what the plants
would if cultivated individually (Mt. Pleasant 2006). That is, the corn makes light available; the
squash reduces weeds; and the beans turn atmospheric nitrogen into mineral nitrogen fertilizer.
Reciprocity is modeled in their relationship. This form of reciprocity is also present in research
methods used by indigenous scholars and scholars of color (e.g., Dance, Gutiérrez, and Hermes 2010;
Kovach 2009; Rigney 1999; Smith 1999).
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Drawing upon ten years of teaching integrative science that acknowledges both Western science
and Indigenous sciences, Hatcher et al., (2009) argue that knowledge is only passed on from one
living being to another when a relationship between the two is formed and when the receiver is
ready. In this sense, knowledge is a verb; teacher and learner both play constructive parts in it,
highlighting the role of reciprocity. In fact, the Mi’kmaq word netukulimk means to “develop the
skills and sense of responsibility required to become a protector of other species.” While a
Whitestream view might privilege the problem solving/utilitarian aspect of reciprocity, I see
reciprocity (along with In Lak’ech) as related to experiencing connections and joy—knowing that
one’s actions are positively affecting oneself and others.

The overall point I am making is for us to live in harmony, without domination, as a form of
metaphysics, and to continue to note the similarities and differences between our modes of being and
those of other-than-human living beings. Recognizing other persons as having something to “teach”
us is not to begin with a stance that other living beings are a means to our end, in order to better
ourselves and our time on this planet or in our multiverse, though that can be a byproduct. Rather,
this stance is simply reflective of a deep belief that we must show respect for others, a form of ethics,
because in doing so, we are showing respect for ourselves, a frame of mind consistent with In
Lak’ech.

Nepantla
Nepantla is the third concept upon which I draw. Nepantla is the Nahuatl (Aztec) term for the
interstitial space between worlds. Gloria Anzaldta explains,

Nepantla can be seen in the dream state, as well as in transitions across borders of class, race, or
sexual identity. Nepantla experiences involve not only learning how to access different kinds of
knowledges—feelings, events in one’s life, images in-between or alongside consensual reality.
They also involve creating your own meaning or conocimientos". (Anzaldta 2000; p.267)

In many ways, Nepantla serves as a space of tensions, of multiple realities. Anzaldua highlights
those tensions, explaining how as a lesbian Chicana poet, she is neither fully accepted by her White
feminist colleagues who do not acknowledge her Indigeneity nor by the Chicano community who
does not recognize her as a lesbian. She is neither and both at the same time; she is in Nepantla. The
same could be said for people who identify as two-spirit, a translation of niizh manidoowag, the
Anishinaabe (Ojibwe) term for spiritual people who walk in two worlds, one foot in female and one
foot in male. In fact, Nepantla has been compared to the action of walking, whereby one is constantly
in motion and where each step shifts the center of gravity so there is no solid grounding. Anzaldta
highlights this movement and potentiality,

Nepantla, where the out boundaries of the mind’s inner life meet the outer world of reality, is a
zone of possibility. You experience reality as fluid, expanding and contracting. In Nepantla, you
are exposed, open to other perspectives, more readily able to access knowledge derived from
inner feelings, imaginal states, and outer events, and to “see through” them with a mindful,
holistic awareness. (Anzaldua and Keating 2002, p. 544).

For Anzaldua, being able to see through human acts of identity, knowledge, and construction
allows us to question when/if the actions of some violate the actions of others, thereby attending to
issues of dehumanization.

It is not simply the “space” of Nepantla that is powerful, but the power of being a Nepantlerx
one who chooses to live in a place of tensions—as a border crosser, so as to birth new knowledge.

viii
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For Nepantleras™, “to bridge is an act of will, an act of love, an attempt toward compassion and
reconciliation, and a promise to be present with the pain of others without losing themselves to
it.” (Anzaldua and Keating 2002; p. 4)

Bridging between two different views requires deep intellectual and emotional work. It means
being willing to hold two or more contradictory views in one’s mind at the same time with the goal
of not quickly coming to a conclusion that subsumes both ideas under an umbrella but maintains
some of those views and reaches a third space that is neither and both of those views. The idea of
Nepantla is consistent with Aboriginal knowledge of the metaphoric mind where we have the ability
to hold two completely different thoughts simultaneously (Cajete 2000).

Nahua metaphysics recognizes the shared collective consciousness of the cosmos. As such, a
person is both in Nepantla and is Nepantla. That is, I am situated within a space of tensions and
multiple realities that is called Nepantla. And, by virtue of being in that space, I am also the thing
called Nepantla; I contribute to its essence. Therefore, Nepantla dictates how we move through the
world. We are conscious of the multiple realities and energy in which we participate and to which we
contribute as well.

Elsewhere, I have argued that Nepantla can help mathematics education researchers think
differently about knowledge (Gutiérrez 2012) and provide a guiding principle for teacher education
(Gutiérrez 2015). Here, I am suggesting that Nepantla can help us interrogate the idea that
mathematics is both a universal endeavor and not a universal endeavor. That is, the practice of
mathematics is not universal in the sense that it is always localized and particular to the needs of
those who practice it (e.g., D’Ambrosio 2006; Ascher 2002; Gerdes 1997; Powell and Frankenstein
1997; Knijnik 2007; Restivo 2007). Yet, many of the forms that are practiced throughout the world
have been identified as falling within six general forms: counting, locating, measuring, designing,
playing, and explaining (Bishop 1988).

For Hatcher et al. (2009), this is two-eyed seeing, learning to see with one eye through
Indigenous ways of knowing and the other eye on Western ways of knowing.

The principles of Two-Eyed Seeing are used for the purposes of collateral learning or colearning
where Western Scientific concepts are constructed side by side with minimal interference and
interaction with Indigenous Scientific concepts (p. 149).

Unlike Hatcher’s goals, I choose to privilege the view of a Nepantlerx—seeing the
interconnectedness between Indignenous and Whitestream knowledge of mathematics. I choose the
term Whitestream instead of European American to highlight the role of global White supremacy in
the enterprise of mathematics education. Like Hatcher et al., Ogawa (1995) advocates for a kind of
multi-science teaching, seeing from multiple views. Aikenhead (2017) echoes this focus on seeing
more than one reality, saying,

Indigenous cultures, for instance, generally share presuppositions characterized as value-laden,
contextualized, cultural, ideological, mostly subjective, and embracing multiple truths. (p. 29)

In embracing these multiple truths, he suggests that students need to learn to be “cultural border
crossers” (Aikenhead 1997), reminiscent of Anzaldia’s Nepantleras.

I choose to talk about knowledge from the point of view of a Nepantlerx because it highlights
metaphysics and the choice for persons to stay in tensions rather than choosing one view over the
other. A critical theorist might suggest an omnipotent perspective from above, a single version of
mathematics that would be necessarily less oppressive and best at addressing ethics. In contrast, a
post-structural view might suggest a relativist position where there is no one truth and all possibilities
are viable for addressing ethics. For me, neither of these options is productive, as each requires a
form of collapsing under one umbrella. From the view of a Nepantlerx, one is always trying to find
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ways of staying in the tensions long enough to birth new knowledge. The value of Nepantla is
reminding us to seek multiple realities and to hold those in view because they help us generate new
knowledge.

Embracing Nepantla would mean allowing these differing views to remain separate but in
relation. Anzaldua refers to this state of interdependence and solidarity as nos/otras,” meaning
us/them intertwined. [See Gutiérrez (2012) for an explanation of nos/otr@s as it relates to
mathematics education.] Like Nepantla, mathematics is always in motion and embodying principles
that could be considered contradictory. Mathematically, the relationship between abstraction and
contextualization is an example, as the definition of each relies upon the other.

Mathematx
Combining the views of In Lak’ech, reciprocity, and Nepantla allows us to raise new questions
about a vision of practicing mathematics that might move past previous notions of Western versus
other mathematics, past an idea of mathematics as either oppressing or liberating, beyond a
mathematics that is either discovered or invented, towards an idea that allows us to deal with today’s
complexity and uncertainties. Towards that end, I am calling for a radical reimagination of
mathematics, a version that embraces the body, emotions, and harmony.

Seeking/Performing Patterns for Problem Solving and Joy

Mathematx is a way of seeking, acknowledging, and creating patterns for the purpose of solving
problems (e.g., survival) and experiencing joy. Beginning with the principles of recognizing self
and/in others, responsibility towards others, and valuing tensions, several things stand out as different
from the typical way Western mathematics is conducted or experienced by students in school. First,
although some mathematicians experience pleasure as a result of solving previously unsolved
problems, that aspect of joy is often a very small percentage of the time and almost always absent
from the “mathematical product” (e.g., new theorem, new proof) that is valued by the community.
Yet, mathematics education researchers who study aesthetics highlight this domain as essential to
human meaning making and to the insights that mathematicians develop (Sinclair 2009).

Aesthetics join emotion, pleasure, and understanding for humans as they relate to their world
(Dewey 1934). For mathematicians, aesthetics may serve as a precursor for intuition, whereby they
do not rely upon a sense of logic and deduction but upon some general sense of how things connect
together (Burton 1999), often illuminating a unity of meanings and values. In this sense, intuition and
wonder may lead to joy and discovery (Sinclair and Watson 2001). That is, we seek what is
surprising and wonderful, yet events must fit into a broader scheme; the parts must fit with the whole
(Gadanidis and Borba 2008). In fact, because humans have had to discern patterns in their world in
order to survive, we may be predisposed to attend to just “enough complexity to engage the mind
but...not overwhelm it with incomprehensible irregularity or diversity” (Sinclair 2009, p. 52).
Although much of this intuitive/aesthetic work remains at the subconscious level for many
mathematicians, mathematx is intricately tied to what is pleasing and rewarding in a connected way,
not just a utilitarian or “problem solving” manner. This perspective is consistent with Boylan’s
(2016) call for putting passion and pleasure at the heart of mathematics education. For me, “pleasing”
includes not just the playful way in which many “pure™” mathematicians invent new workspaces by
beginning with different axioms, (e.g., 8-dimensional space) but also how other persons perform
mathematx for/with us. This version of play deviates from Bishop’s definition surrounding games
because play does not necessarily involve an organized game, but includes a kind of frivolous
activity with value perhaps only for the one performing it.

Like plants, humans also have a way of expressing ourselves (our tastes, our values) and our
sense of beauty through patterns (e.g., braiding hair, creating symmetry in our surroundings, walking,
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dancing, speaking, dressing, creating balance in a home). These patterns are both playful (useless)
and purposeful (useful) at the same time because they have the potential to connect us with others.
Reviewing the work of Dissanayake, Sinclair (2009) highlights that this form of expressing ourselves
through aesthetics helps indicate that we are special. In terms of patterns, it might not be just
regularity that matters for persons. Biologists have noted that the ability to embody opposites
(Nepantla) is consistent with living systems that show simultaneous stability and plasticity,
incomplete separation between internal and external topology, prolonged stages of criticality, and the
co-existence of future and past (Soto et al. 2016; Longo and Montévil 2011; Montévil et al. 2016).
Again, broadening our definitions of living beings may yield insights for mathematicians who seek to
discern, appreciate, and reciprocate patterns.

Current versions of what count as “beautiful” in mathematics tend not to reflect the diversity in
our world. Instead, they tend to relate to truth (Stewart 2007), implying universals rather than
uniqueness/expression that would align with performance or a plurality of epistemologies. If we can
recognize that cultural theses of modes of living are aesthetic choices (Popkewitz 2002; 2008) and
some aesthetics are not superior to others, then the means for controlling or dominating is lessened.
The opportunity to appreciate another’s values is the embodiment of In Lak’ech. In other words,
approaching life in this way of appreciating and looking for similarity is what helps us grow and also
recognize difference. Ethics and aesthetics join in mathematics when we have guiding principles like
In Lak’ech, reciprocity, and Nepantla.

Intervention in Reality

Second, whereas mathematics tends to be thought of as a noun (e.g., a body of knowledge, a
science of patterns, a universal language), mathematx is performance and, therefore, a verb. Just as
identity is not something that you are, but rather something you do (Butler 1999), mathematx
emphasizes the guiding principles and the process as opposed to the product. Drawing upon the
concept of reciprocity, mathematx is an intervention-in-reality (action) as opposed to a
representation-in-reality (explanation) (Santos 2007). The starting point for Western mathematicians
would be to begin with embracing the joy/emotions and seeking In Lak’ech, reciprocity, and looking
for opportunities to be a Nepantlerx while doing mathematics. Let us consider an example. A
common theme in combinatorics is to start with an object P, and define some sort of counting
function to P, which makes sense for taking in positive values because it results in a polynomial.
Then, negative values are substituted into the counting function and it is recognized as a new
counting function for a different/new mathematical object. For mathematicians, this work is known
as combinatorial reciprocity (Meléndez 2017). In fact, Beck and Sanyal (2017) ascribe animacy to
the process by referring to it as moving from “your world” to “my world.” The new counting
function has offered something that the original counting function could not. Is the mathematician
grateful for the offering of this new counting function? Is there some joy in noting that functions can
give back to each other? How might that starting point extend to other forms of reciprocity in doing
mathematics with other persons?

The idea of mathematx as verb is consistent with many Aboriginal languages that are largely
verb-based and may relate to how persons practice mathematics (Lunney Borden 2011). Mathematx
is an activity that cannot be extracted from the living being(s) in the process of solving problems
and/or experiencing joy--the mathematxn. Although ethnomathematics tends to take into
consideration the idea that different cultures do different mathematics, the unit of analysis normally
remains at the level of the group and what they have produced, possibly promoting the unintended
message that all members of that culture do the same things for the same purposes. Mathematx
acknowledges this group relation, but recognizes the meaning that each person ascribes to what is
being experienced.
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The x at the end of the word signifies movement, an openness, the x being a variable that could
be represented by anything. In this sense, mathematx is constantly evolving, depending upon what is
represented with that x. This framing is consistent with the choice to use “x” as an ending (e.g.,
Latinx) to represent any gender performance instead of privileging a patriarchal view or ascribing to
a binary of male/female.

I choose mathematx instead of mathematix in order to distinguish between the two when spoken
aloud. In Nahuatl, the “x” is pronounced “sh.” So, the word is pronounced mathematesh. The x is
also political in the sense of Malcolm X, the human rights activist who took on the x to represent all
of the unnamed ancestors and their cultures that had been lost through slavery. For me, mathematx is
a political statement about reclaiming the persons who have been lost when humans remain at the
center. As such, mathematx seeks to intervene in the status quo of mathematics.

Living Mathematics

The title of this article suggests a vision of living mathematx. What might it mean to live
mathematx? Living mathematx means both that we live a version of mathematx as well as we are a
living version of mathematx. This framing is consistent with Nahua metaphysics that suggests one is
both in Nepantla and one is Nepantla. Living mathematx means moving through the world with other
living beings, acknowledging, appreciating, and reciprocating the patterns produced. If we look to
animals and plants for some insight, we see that Brassica oleracea (Romanesco cauliflower) performs
itself in both utilitarian (compact) and non-utilitarian (pleasing) ways that may get us to pay attention
to its form and to continue to cultivate it. On the one hand, Romanesco cauliflower performs a
version of the “Fibonacci” sequence that maps onto Western mathematics, and the elegance of the
pattern brings joy while at the same time solves problems of space. Yet, like all persons, every
brassica oleracea, performs itself in a way, and over its lifetime, that shows variance and suggests a
departure from a pre-determined set of possible outcomes programmed by genomes (Montévil et al.
2016). We might ask ourselves, why is a grove of trees, each with similar but not perfect versions of
fractals more pleasing than a computer-generated version of a grove of trees that precisely follows
expanding symmetry? Is there something more in our relation that triggers a sense of pleasure,
appreciating the aesthetics that plants perform? Are we able to discern and appreciate asymmetry
along with symmetry? And, in what way(s) might this relate to aesthetics, intuition, or insight? Are
there patterns in the ways in which our pleasure is communicated back to plants, for example,
through pheromones or other means we are not yet able to understand or describe?

Do other persons remind us of the importance of beauty in imperfection, of not relying upon a
defined algorithm? That is, although they offer good approximations of such things as shorelines of
oceans, fractals in Western mathematics do not map perfectly onto the universe around us. Moreover,
not all symmetry is inherently beautiful or “natural.” Marcelo Gleiser refers to this phenomenon as
the aesthetics of the imperfect. He notes that while synthesizing amino acids in a laboratory setting,
biologists achieve approximately 50 percent right-handed chiral™ formations and 50 percent left-
handed formations. Yet, in living creatures, virtually all amino acids are left-handed. This asymmetry
is critical for protein folding and reproduction. The same is true for the asymmetry of occurrence in
matter and anti-matter in physics™". So, asymmetry, not just symmetry, may be a form of
performance by living beings to which we need to pay greater attention. Perhaps this asymmetry has
aspects of a pattern that are complex enough without being overwhelming to initiate surprise or
wonder.

Can our older brothers and sisters in this universe (and others) teach us something based on how
they have developed and organized themselves to relate with each other to please and solve
problems? From a practical point of view, are there ways in which we can organize our living spaces
to draw upon visions such as the Three Sisters and other geometric formations that our older brothers

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier
Association of Mathematics Teacher Educators.



Plenary Papers 15

and sisters use? In some respects this idea of learning from our older brothers and sisters is not new.
Researchers have begun to rely upon biomimicry, copying the forms observed in “nature,” in order to
solve complex problems of space, design, and efficiency. For example, termites have taught
architects in Harare, Zimbabwe, how to erect buildings with patterns that create effective internal
climate control systems; Kingfisher birds have taught engineers how to construct high speed trains
that will move through the air with less noise; plants and insects are teaching aerospace engineers
about miori folds in order to tightly package and then deploy enormous complex origami versions of
sun shades to block the light and allow telescopes to take more accurate pictures; similar folds in the
universe are helping physicists understand neighboring galaxies. However, all of this biomimicry is
taking place in research labs, not in schools with students. We are missing an opportunity to expose
students to plants, animals, and other persons as our teachers, and perhaps also our opportunity to
reciprocate actions.

In terms of recognizing and performing patterns—living mathematx—marine creatures such as
salmon, sea turtles, trout, and eels have the ability to read magnetic fields in the earth and use them in
migration (Pennisi 2017). Animals such as bears, dear, elk, great apes, macaws, lizards, and fruit flies
are able to read (communicate with) plants in order to self-medicate when they have diseases
(Shurkin 2014) or develop high levels of toxins in their skin and use other chemical signals to
communicate and ward off predators (Hagelin and Jones 2007). Several tree species such as oak,
spruce, and beech are known to communicate among themselves and with each other in order to ward
off disease, share resources, and protect each other (Wohlleben, 2016). Like Las Tres Hermanas
(corn, beans, squash) mentioned earlier, many of our cousins seem to recognize/acknowledge
patterns and create new ones while collaborating and valuing reciprocity. To date, many researchers
rely upon Bishop’s (1988) classification of six forms of mathematics: counting, locating, measuring,
designing, playing, and explaining. I urge us to consider what forms of classification might we
develop in looking to other-than-human persons and the ways in which they live mathematx in their
local contexts? Which new forms of mathematics might arise?

From a philosophical perspective, perhaps it is neither that we have come to appreciate the
“natural” patterns present in plants, animals, and rocks, as Platonists would have us believe (i.e., that
they have taught us patterns that were programmed within them or that they developed), nor that we
simply project our own aesthetics onto our living cousins (i.e., that we see the mathematics we want
to see in our environment) as Realists would have us believe. More likely, our relations and the
tensions between us provide the multiple lenses on reality and instability. We are constantly in
motion like a Nepantlerx. This is consistent, though different, from Barad’s (2001) notion of “intra-
action.” If, instead of perpetuating a human/non-human binary, we consider the shared consciousness
between all living beings, the greater unity to which we belong, we are more likely to value
mathematx for what it offers us. We can acknowledge both the potential for domination between
living beings while also opening up the possibility of harmony and reciprocity in the practice of
mathematics.

As we look for new structures and forms of mathematics to help solve the global crises we
encounter as well as to experience joy, we might consider how other living beings might offer
lessons and insights. We have developed new structures and physics concepts by studying intently
such things as symmetry and conservation laws in the physical world. Even using a narrow definition
of living beings, biologists have noted that all organisms (uni-cellular or multicellular) do not simply
follow prescribed rules or programming. They develop their own norms/rules in a way that balance
between plasticity and robustness; that is, they show spontaneous organization and variance that does
not appear in physics (Soto et al. 2016). If we broaden our understanding of living beings beyond the
organism, we might find even further insights.
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Reflecting an Ecology of Knowledges

Building upon Andreotti, Ahenakew, and Cooper’s epistemic plurality (2011) and Santos’ (2007)
call for a new ecology of knowledges, I suggest that mathematx guide our work in mathematics.
Because mathematx acknowledges that all persons will seek, acknowledge, and create patterns
differently in order to solve problems and experience joy, multiple knowledges are valued and
sought. These multiple knowledges are important, given that all knowledge is partial and each offers
us a different angle and understanding on the world. The goal is not to work towards a summative
understanding, as if by simply adding the different knowledges we will have a complete or perfect
view. Rather, our work is to locate ourselves in others and others in us, as we attempt to understand
our world through patterns. Doing mathematics in this way offers us the opportunity to unlearn our
epistemological arrogance. The concept of reciprocity draws upon complementarity in recognizing
that different knowledges contribute something others do not. Mathematx nurtures a view of
mathematics that always considers strengths and limitations for particular purposes. For example, we
might ask ourselves: which forms of mathematics can our brothers/sisters perform for which we do
not have a way to express? In looking to other persons, might we be more open to multiple versions
of knowing that are constantly open to new axioms and even non-axiomatic mathematics?

While others have noted that Western mathematics—sometimes referred to as Platonist
mathematics or European mathematics or European American mathematics—is in opposition to
Indigenous mathematics, [ am not seeing that mathematx would be in opposition; rather it would
include Aboriginal mathematizing. In the same way that Latinx rejects the gender binary, mathematx
rejects the epistemological binary. Mathematx allows for a variety of expressions without suggesting
one is “normal,” superior, or the reference point for erasing other epistemologies. However,
mathematx is not everything and anything. It privileges a particular way of moving through the world
that acknowledges and produces patterns that align with the collective consciousness and energy of
the cosmos and respects other persons. Mathematx is less a way to describe how we currently do
mathematics and more a goal for how to approach our relations with each other in the practice of
mathematics. In this sense, mathematx is a quest for intersubjectivity and systems thinking, not unity.

Moreover, mathematx acknowledges Nepantla by underscoring the fact that there is no absolute
universalism or absolute relativism. That is, there is no umbrella term under which all forms of
mathematics can collapse and explain everything in reality. When we move from a global universal
mathematics to a form of mathematx, whereby we acknowledge epistemological pluralism and are
guided by first principles of In Lak’ech, reciprocity, and Nepantla, we are likely to see changes in not
only mathematical activity (and products) but also in mathematxns.

Philosophers, sociologists, and anthropologists who study mathematics have long argued that
“school mathematics” is but one small version of the many forms of mathematics practiced in the
world and that such mathematics does not operate outside of individuals, morals, or politics (Brown
1994; Clarke 2001; Ernest 1994, 2000; Fitzsimons 2002; Restivo 1994; 2007; Turnbull 2000; Verran
2001). Often, in making these claims, researchers point to the field of ethnomathematics to highlight
the fact that all cultures do mathematics in localized ways. In some respects, | am arguing for an
extension of ethnomathematics to include animals, plants, rocks, bodies of water, and other persons.
Mathematx is consistent with a focus on peace, education as relation, a recognition of the imprint of
Western thought in dominant mathematics, and a language through which people could be more
creative (D’ Ambrosio 2007; Francois and Van Kerkhove 2010; Gerdes 1988; Powell and
Frankenstein 1997). Even so, I choose mathematx as opposed to “ethnomathematics with the
inclusion of other-than-human persons” because I aim to avoid some of the pitfalls of previous
understandings and implementations of ethnomathematics (Cimen 2014; doCarmite and Pais 2009;
Vithal and Skovsmose 1997). For example, I am not looking to use Western mathematics or a
Platonist view as the standard by which we judge other persons to live mathematx or to suggest a
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kind of essentialization of humans (Gutiérrez 2000; Francois and Van Kerkhove 2010). Moreover, |
do not wish for the knowledge of our older brothers and sisters to simply be
acknowledged/sanctioned and shared (Mesquita and Restivo 2013); I want such knowledge to be
valued and applied. Although D’ Ambrosio broadened his definition of “ethno” to include “all
culturally identifiable groups with their jargons, codes, symbols, myths, and even specific ways of
reasoning and inferring” (p. 17, cited in Francois and Van Kerkhove), people have continued to think
about ethnomathematics as practiced by ancient ethnic (non-Western or non-White) cultures™" or
collapsed it into a form of cultural appropriation. By introducing mathematx, I also seek to decenter
the notion of “tics” (technologies), which, for me, do not capture the body/spirit (feminine) and the
ways we move through the world in the same metaphysical manner (Haraway 1988; Harding 2008).
Mathematx is more than explaining and understanding in order to survive (D’ Ambrosio 1990); it
attends to aesthetics and the body.

Implications for Teaching and Learning

Elsewhere, I have argued that the practice of school mathematics in the US regulates the child by
privileging: algebra/calculus over geometry/topology/spatial reasoning; rule following over rule
breaking; Western mathematics (culture free) over ethnomathematics (recognizing that even
academic mathematicians are a culture); the “standard algorithm” over invented or international
algorithms; abstraction over context (“just pretend this is real world”); mind over body; logic over
intuition; and encouraging students to “critique the reasoning of others” over appreciating their
reasoning (Gutiérrez, in preparation). Not only can these repeated practices over a lifetime serve to
dehumanize students and teachers in classrooms, the narrative about mathematics being a pure
discipline, reflective of the natural world around us, universal, with an almost unilaterally positive
relationship to society’s advancement, leaves many humans unable to challenge this narrative to
consider other ways of doing mathematics. In this way, school mathematics comes to normalize and
valorize particular practices and to make others seem deviant and in need of fixing (Skovsmose 1994;
Walkerdine 1994). By continuing to privilege data analysis and probability over other kinds of spatial
patterning, even if that data analysis concerns itself with issues such as climate change, we run the
risk of limiting new ways of doing mathematics and our relationships to the practice.

In contrast, what might teaching and learning look life if mathematx were embraced? First,
students need time to relate with other-than-human persons in order to develop a familiarity with the
kinds of patterns that exist outside of themselves—things that are both another version of us and yet
not exactly us—so they can provide mirrors onto ourselves and windows onto another’s world.
Rather than education happening within school walls, students might be asked to head outdoors. In
lieu of a purely dominant mathematics curriculum (Gutiérrez 2002), students might be asked to
investigate: How do we acknowledge, understand, and relate to the patterns in bird song? What are
the patterns/signs/codes that allow some animals to relate to their plant relatives for the purpose of
self-medication? What are some of the patterns that occur as insects package their wings and bodies?
And, in what way(s) might those forms solve problems and bring joy? How do those packages of
wings and bodies relate to other packages in humans, in other species, in the imagination? Where
does the search for patterns fail to capture other meanings in these practices? These are all questions
for which most teachers will not have answers. Therefore, different from the portrayal of the math
teacher as the credentialed professional who has acquired the “knowledge base” and who is inserted
into the child’s life in a coercive relationship whose success is conditional upon pre-set performance
measures and criteria, living mathematx would involve the passing of knowledge only when the
knowledge receiver is ready and a relationship is formed between giver and receiver, as suggested
earlier by Hatcher et al. (2009).
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In some respects, seeking to understand how we and our older brothers and sisters live
mathematx can serve as both a problem solving exercise (in mental manipulation, spatial reasoning,
and other things that might map easily onto current forms of humans doing mathematics), but it is
also likely to deviate from the language we have to understand or describe. In this way, students will
be learning how to be open to other forms of being and for recognizing the tools necessary for
reading and responding (reciprocity) to those forms and also being fully present in the beauty of such
performances. Such an education would shift the dynamics from an objectifying description and
problem-solving manner towards one that includes joy, respect for the person, and the desire to act
(reciprocate) in a way that is responsive to the particular situation at hand, thereby changing the
individual learner in the process. In the same way that we might see traditional mathematics
classrooms move away from students being taught to “critique” the reasoning of other students, as is
called for in the Common Core State Standards in Mathematics (National Governors’ Association
2010) towards what I refer to as “appreciating” the reasoning of other students (i.e., being able to
stand in their shoes), we might see that process occur across all persons.

Some researchers have started to bridge the gap between aesthetics and mathematics through the
online game Fold It where players find pleasure in folding proteins in compact ways and earn game
points (Cooper et al. 2010). The players’ unique folds are analyzed by researchers who then apply
puzzle solutions to real world problems in the medical industry. In fact, this form of crowd sourcing
has developed insights and answers to problems concerning the AIDS epidemic that researchers and
computer-generated approaches alone had failed to solve. Researchers involved in the project are
studying the intuition of players and how they approach the folding process in order to improve
algorithms generated by computers. This form of pleasure and “learning” occurs outside of the
school walls. However, combining versions of exploring the world to relate with other persons and
then playing such games may help us identify certain trends that would have been difficult using our
eyes alone. That is, there may be ways in which relating with plants, animals, rocks, or other persons
inspire us to develop intuition in approaching the visual display of computer-generated objects that
can be both pleasing for us as well as build upon the mathematx that other persons live in order to
generate biomedical solutions to health problems.

Learning through mathematx accedes that all knowledge is based on particular worldviews and
ways of knowing that close down other possible choices; that is, knowledge is a political process, not
a neutral product. Rather than mathematics being seen as the pursuit of truth in the sense of a
unifying theory of reality (e.g., the unique solution to string theory) and, therefore, the means to
control, learners embracing mathematx might come to see that the mathematics performed by
humans is but one form that describes part of our world, but not all. Through living mathematx,
teachers and students would practice walking alongside of other living beings, revising their
understandings based upon their relations with them. In this sense, students would have opportunities
to unlearn their epistemological arrogance. Teachers would focus upon helping create opportunities
for learners to engage in an aesthetic experience—seeking surprise both in how similar something is,
but also how it differs—to wonder about how other living beings seek, acknowledge, and perform
patterns for their own survival and joy. Teachers might also encourage students to search for patterns
that are felt/experienced (at the macro level), not just conceptually identified (at the micro level).
What are the aesthetic preferences that help us define and understand the concept of pattern?
Through mathematx, learners are likely to become more reflective about their learning and their
relations in the world—what they know, what they do not know, as opposed to what can be known.

Because mathematx involves the Nepantla state of both/neither when discussing problem solving
and joy, learners will need to become comfortable with such uncertainty. In other words, they will
come to know and practice mathematics as neither purely problem solving, nor as purely joy, but also
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not both in a cumulative sense. Learning mathematics in this way means being able to, at times,
acknowledge one side over the other, but always seeing the two in relation.

Teachers’ roles would necessarily shift from telling/showing and towards living alongside of
students and other persons. Teachers should be asking themselves, “Am I conducting mathematical
activity with an eye towards reciprocity, Nepantla, In Lak’ech? Am I doing mathematics to see
myself in others and others in myself, to give and to receive from my universe, to acknowledge
multiple ways of knowing and multiple kinds of knowers?” Students would be learning to move
through the world, appreciating, noting the forms, packages, and connections that plants, animals,
rocks and other persons develop. In a sense, we are apprenticing learners to become “mathematxns”
by providing guiding principles—In Lak’ech, Nepantla, and reciprocity. We are preparing them to
look for what we already acknowledge/sanction as some humans doing mathematics with how other
persons (human and other-than-human) live mathematx. In doing so, we must recognize that
ignorance might not just be a lack of knowledge but an active refusal to know because it disrupts
one’s previous beliefs. If we start early with young learners, it may be easier to disrupt what humans
have come to consider normal in the practice of mathematics. That is, like learning a new language,
young students often are able to absorb new ideas and new ways of gaining knowledge.

Mathematx is not a rival body of formal knowledge to mathematics. Rather, mathematx is a
worldview that surrounds and guides whatever it is that we are trying to accomplish mathematically.
However, because of the performativity of mathematx, this new approach is likely to produce new
structures and forms that academic mathematicians might acknowledge as new mathematics.
Indigenous epistemologies value context and relationships, recognizing that our strength comes from
understanding ourselves not with universal principles but in relation to particular lands and particular
living beings. One could argue that the individual cannot be extracted from its environment and
understood in any meaningful way. Biologists would agree, suggesting that because biological
systems operate under different theoretical principles, a focus on living beings is likely to require
different forms of mathematical modeling (Montévil, 2017). For example, breaking something down
into its parts in order for study does not necessarily lead to anything meaningful about the results of a
model when inserted back into its context. We saw this was the case with synthesized amino acids
versus ones occurring in nature. So, our definition of a “useful mathematical model” may need to be
reexamined when we include all living beings as performers of mathematx, including ones that
would not be classified as organisms.

I am not suggesting that humans have gotten it all wrong and that by turning to other-than-human
persons, we will get it right. My goal is not to get closer to some absolute truth about our world.
Rather, learning with other persons opens the door for us to have different lenses for viewing and
relating with our universe and others. And, in doing so, we have the opportunity to learn how
different approaches (mathematics or mathematx) make im/possible certain forms of knowing the
world, recognizing that all of these forms are provisional, local, and legitimate. Even so, given the
history of particular knowledges, knowers, and ways of knowing that have dominated in our history
with respect to mathematics, it is important to give greater focus to the ways other-than-human
persons live mathematx.

I recognize the potential limitations of attempting to use a term like mathematx that is difficult to
both say and spell, even if one understands conceptually what it can offer. The term
ethnomathematics, even when being explicit that all cultural forms of mathematics are “ethno” has
not prevented many researchers and teachers from continuing to use Western mathematics in
opposition to, instead of as a version of ethnomathematics. That is, neither do we tend to refer to
Western mathematics as such nor do we refer to other mathematics as Eastern, Mexican, Northern, or
American. Ethnomathematics seems to encourage researchers and teachers to create a binary between
Western and Indigenous, rather than recognizing a variety of forms, some with overlapping goals and
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principles. Moreover, ethnomathematics also has not been well incorporated into the school
mathematics curriculum. So, some might wonder, what is to prevent the same phenomena with
mathematx?

To avoid these potential pitfalls, I have suggested we expand our view to all living beings,
thereby providing us with the ability to consider how some humans live mathematx differently from
each other as well as from other persons, creating new lines of solidarity (In Lak’ech) or difference
(and the need for reciprocity), or contradiction/tension (Nepantla). By expanding to other living
beings, mathematx can avoid the trap of Western versus “other” mathematics and open the door for
new categories to be drawn. For example, in what ways do humans live mathematx that are
consistent or compatible with how trees live mathematx? And, how are individual humans affected
by considering trees to be simultaneously another version of us (In Lak’ech) and not a version of us
(Nepantla), but in need of our reciprocity? In what ways are we incompatible? What are the new
knowledges and sensibilities we need to fully develop to live in harmony? Moreover, because
mathematx is not a description of the world, but rather a set of first principles in doing mathematics,
it differs from ethnomathematics in that it sets out a form of intervention.

Although the vision of living mathematx that I have outlined may sound outlandish, we need
only remember Clarke’s (1973) third law: “Any sufficiently advanced technology is indistinguishable
from magic.” In fact, I argue that mathematics as a field and as a human endeavor need only look to
other sciences to see it is late to evolve. The field of physics used to promote the idea that there was a
single time-space continuum. Then, Brian Greene (2011) introduced the concept of infinite parallel
universes and physicists are now imagining how humans could participate in more than one space at
one time. Moreover, the cosmologist Alexander Vilenkin has proposed a theory of our universe
sitting within a bubble of other universes (Vilenkin and Tegmark 2016), the implication being that
other universes may have different laws of physics. In a similar vein, I am suggesting that we may
have different forms of mathematx in which we participate, but to which we are largely blind and
numb. When we move 'through the world seeking connections and reciprocity, our views of
ourselves and of others change. I ask us to open our minds to envision how such a view could change
the relationship between humans, mathematics, and this universe with/in which we currently live.

Endnotes

"I am grateful to Federico Ardila-Mantilla, Kimberly Seashore, Andrés Vindas Meléndez, and
Diana Zambrano at San Francisco State University; and Brandon Singleton at the University of
Georgia for providing helpful comments on an earlier version of this article.

1 cite this article as 2010/2013 because it was published online through JRME in 2010 and some
researchers began citing it as such then. It was not released in print until 2013, and some researchers
have cited it as such since. Because the focus of the article is on a particular point in history, the
work should reflect the earlier date.

i My maternal grandmother was a woman of Raramuri (Tarahumara) descent. My ancestors are
located in the Copper Canyon region of Northwestern México.

v Two-spirit is an Aboriginal term.

VI use Indigenous and Aboriginal interchangeably. US authors tend to use the term Indigenous,
whereas authors from Canada, Australia, and New Zealand tend to use the term Aboriginal. In
Canada, Aboriginal includes First Nations, Métis, and Inuit peoples.

Vi place Fibonacci in quotes to highlight the presence of settler colonialism. That is, although the
Italian Leonardo Pisano (Fibonacci) receives credit for the pattern, many cultures and persons
throughout the world, including Pingala in 200BC in India, had already known/performed the same
pattern many years earlier. In fact, if humans are no longer the center, we might credit nautilus
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pompilius (Nautilus shell), pinus coulteri (pinecone), or helianthus annus (sunflower) with the
“discovery.”

¥il Conocimientos translates to “knowledges” in English.

Vil Similar to the use of Chicanx, Nepantlerx indicates solidarity with people who identify as
LGBTQIAZ2S. In the Spanish language, the —ero/-era ending of a word typically signifies “one
who...” As such, a Nepantlerx is one who chooses to reside in Nepantla.

X Anzaldta’s terms do not reflect the “x” because she was writing before such language was
common. She used a version that privileges a feminist perspective and therefore ends in “a” instead
of “0.”

* Anzaldua’s terms do not reflect the “x” because she was writing before such language was
common. She used a version that privileges a feminist perspective and therefore ends in “a.”

* T place pure in quotations to suggest that there is no such purity to mathematics. When we use
terms like pure mathematics or fundamental mathematics, we are “othering” different forms of
mathematics in ways that make them sound primitive or deviant. An Aboriginal stance would call
into question whether any form of mathematics could be seen as pure, as it will always have a
purpose and a grounding —cultural context—to start.

il Chirality refers to the geometric structure of a molecule, in particular how four different
entities connect to a carbon center. Like hands, chiral molecules cannot be superposed onto their
mirror image.

*ii See, for example, Paul Dirac’s prediction of anti-matter that contradicted classical quantum
physics where systems were thought to only have positive energy.

¥ Noted exceptions include the work of Gelsa Knijnik (2011), who has chronicled the Peoples
Land Movement in Brazil.
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PSYCHOLOGY IN MATHEMATICS EDUCATION: PAST, PRESENT, AND FUTURE

Leslie P. Steffe
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Starting with Woodworth and Thorndike’s classical experiment published in 1901, major periods in
mathematics education throughout 20th century and on into the current century are reviewed in
terms of competing epistemological and psychological paradigms that were operating within as well
as across the major periods. The periods were marked by attempts to make changes in school
mathematics by adherents of the dominant paradigm. Regardless of what paradigm was dominant,
the attempts essentially led to major disappointments or failures. What has been common across
these attempts is the practice of basing mathematics curricula for children on the first-order
mathematical knowledge of adults. I argue that rather than repeat such attempts to make wholesale
changes, what is needed is to construct mathematics curricula for children that is based on the
mathematics of children. Toward that end, I present several crucial radical constructivist research
programs.

Keywords: Learning Trajectories, Research Methods, Cognition, Curriculum

The accent must be on auto-regulation, on active assimilation — the accent must be on the activity
of the subject. Failing this there is no possible didactic or pedagogy which significantly
transforms the subject (Piaget, J., 1964).

Mathematics Education—1900-1950

Behaviorism and Faculty Psychology

The classical experiment. The classical experiment by Woodworth & Thorndike (1901) at the
beginning of the 20th Century introduced the “scientific movement” in education and it was
considered as the death knell of faculty psychology, the doctrine of “mental discipline” (e.g.,
Whipple, 1930; Thorndike, 1922). In faculty psychology, the mind was viewed as a collection of
separate modules or faculties assigned to various mental tasks, such as reason, will, concentration,
memory, or language and it was thought that training in one faculty would transfer to another. As a
result of their experiment, Woodworth & Thorndike (1901) concluded that, “The improvement in any
single mental function rarely brings about equal improvement in any other function, no matter how
similar, for the working of every mental function-group is conditioned by the nature of the data in
each particular case” (p. 250). The lack of transfer led Thorndike (1903) to develop his theory of
identical elements: “The answer which I shall try to defend is that a change in one function alters any
other only in so far as the two functions have as factors identical elements” (pp. 80-81). Once this
idea was accepted, “arithmetic was on its way to being analyzed into elements so that the stimulus-
response theories of Thorndike could be more readily applied” (Van Engen & Gibb, 1956, p. 1).

Cartesian epistemology. There was also a separation or duality between the mind and the body
in faculty psychology in that it was thought that mental discipline of the intellect would lead to
control of the will and emotions, a duality that has become known as “Descartes error”” (Damasio,
1994, pp. 248)—*I think, therefore I am.” It is interesting to me that this philosophical rationalism of
faculty psychology was regarded as falsified by means of a “crucial experiment” that was conducted
in the context of a competing paradigm, empiricism." Although I don’t wish to defend faculty
psychology, in retrospect I believe that a basic reason why faculty psychology was abandoned
transcended Woodworth and Thorndike’s classic experiment. In empiricism, the doctrine that the
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world imprints itself on the mind, there is a duality that is similar to the mind-body duality between
an endogenic (mind centered) view versus an exogenic (world centered) view (Konold & Johnson,
1991). This mind-reality duality in the main explains why faculty psychology was rejected and why
empiricism was so widely embraced. In behaviorism, no explanation of mind was needed nor was it
sought so there was already a major conflict in the two views of mind in faculty psychology and in
the behaviorism of Woodworth and Thorndike®. That is, there was already a paradigmatic rejection
of faculty psychology by the empiricists and the classical experiment corroborated the philosophical
rejection. Furthermore, in empiricism, something is true, “only if it corresponds to an independent,
‘objective’ reality” (von Glasersfeld, 1984. p. 20). So, the idea that the functioning of one faculty
would be transferred to the functioning in another faculty would have to be validated by such
functioning in objective reality, which is the crux of the classical experiment.

Behaviorism and Progressive Education

Progressive education. Although faculty psychology was abandoned as a psychological
rationale in education, there was a competing paradigm to the scientific movement during the period
of time that was known as Progressive Education. Under the leadership of John Dewey, the
Progressive Educational Association was formed in 1919 and it served as a counterpoint to the
scientific movement. Progressive Education promoted the idea of a child-centered education as well
as other aspects of education." As early as 1902 John Dewey wrote;

Abandon the notion of subject matter as something fixed and ready-made in itself, outside of the
child’s experience; cease thinking of the child’s experience as also something as hard and fast;
see it as something fluent, embryonic, vital; and we realize that the child and the curriculum are
simply two limits which define a single process. Just as two points define a straight line, so the
present standpoint of the child and the facts and truths of studies define instruction. (Dewey,
1902, p. 11)

This quotation might be interpreted as Dewey introducing a duality between the child and the subject
matter. Dewey’s (1902) distinction here is the subject matter as known by the scientist and the
subject matter as known by the teacher.

Every subject thus has two aspects: one for the scientist as a scientist; the other for the teacher as
a teacher. These two aspects are in no sense opposed or conflicting. But neither are they
immediately identical. (p. 22)

For Dewey (1902), subject matter for scientists represented a given body of truths, whereas for the
teacher,

He is concerned not with the subject matter as such, but with the subject matter as a related factor
in a total and growing experience. Thus to see it is to psychologize it. (p. 23)

Two concepts of number. Dewey’s emphasis on psychologizing subject matter was quite
different than that of the behaviorists. The difference is well illustrated in how Dewey and
Thorndike regarded number. For McLellan & Dewey (1895),

Number is not a property of the objects which can be realized through the mere use of the senses,
or impressed upon the mind by so-called external energies or attributes...In the simple
recognition, for example, of three things as three the following intellectual operations are
involved: The recognition of the three objects as forming one connected whole or group—that is,
there must be a recognition of the three things as individuals, and of the one, the unity, the whole,
made up of the three things. (p. 24)
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So, Dewey was not an empiricist. Recognition is an indication of assimilation, which, for Piaget
(1964), is the essential relation involved in learning. Recognizing the three things as individuals is
the result of using an operation of the mind, the unitizing operation (von Glasersfeld, 1981), and
recognizing the three things as the one, the unity, is the result of using the operation of uniting the
three things into a composite unity. Unitizing sensory material from two or more sensory channels
into experiential wholes stands in contrast to the assumption that the world imprints itself on the
mind, an assumption on which Thorndike’s psychology of number was based.

Thorndike (1922) identified three meanings of numbers—the series, collection, and ratio
meanings—and he credited McLellan and Dewey for the ratio meaning. However, he made no
attempt to engage in an analysis of the operations of the mind that produce these meanings. Of the
collection meaning, he wrote:

Or we may mean by knowledge of the meaning of numbers, knowledge that two fits a collection
of two units, that three fits a collection of three units, and so on, each number being a name for a
certain sized collection of discrete things, such as apples, pennies, boys, balls, fingers, and the
other customary objects of enumeration in the primary school. (pp. 2-3)

As an empiricist, number was taken as a given in reality and imprinted itself on the mind through the
senses. Rather than being concerned with the mathematical experience of the child, for Thorndike
(1922), “The psychology of the elementary school subjects is concerned with the connections
whereby a child is able to respond to the sight of printed words by thoughts of their meanings...” (p.
xi).

Thorndike’s influence. The influence that Thorndike had in mathematics education is illustrated
in the twenty-ninth yearbook of the National Society for the Study of Education.

Mainly, the main psychological basis is a behavioristic one, viewing skills and habits as fabrics
of connections. This is in contrast, on the one hand, to the older structural psychology [faculty
psychology]™ which has still to make direct contributions to classroom procedure, and on the
other hand, to the more recent Gestalt psychology, which, though promising, is not yet ready to
function as a basis of elementary education. (Knight, 1930, p. 5)

Knight’s attempt to separate the behaviorist approach to elementary education and that of the faculty
psychologists was spurious because it is difficult to distinguish faculty psychology’s educational
model (mental discipline) and Knight’s development of a behavioristic educational model. In faculty
psychology, it was thought that the best way to strengthen the minds of younger students was through
drill and repetition of what we might now call the basic skills in order to cultivate the memory",
which is quite similar to Knight’s interpretation of Thorndike’s (1922) Psychology of Arithmetic.
Thorndike thought that arithmetical knowledge should be treated as an organized interrelated system,
whereas his students, of which Knight was one, focused on the mechanics of arithmetic (Van Engen
& Gibb, p. 10). Knight also wrote of avoiding progressive education in the same introduction to the
yearbook.

Some readers may feel that the spirit of this Yearbook is too conservative, that it lacks a bold and
daring spirit of progressiveness. There has been a conscious attempt to avoid the urging of any
point of view not supported by considerable scientific fact. (Knight, 1930, p. 2)

A contentious relationship. The contentious relationship between progressive educators and
educators who held the opinion that the function of the school was to train the working class, be they
empiricist or faculty psychologists, appeared prior to the publication of the twenty-ninth yearbook.
In 1918 Harold Rugg and John Clarke critically analyzed attempts to reconstruct ninth-grade
mathematics and presented their own program in the last chapter of their study. “[T]he construction
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of a continuous mathematical course, worked out around two basic principles, one mathematical and
the other psychological” (p. 176) was a major component of their program. They did cite a classic
textbook series (Wentworth, Smith, & Brown, 1918) as an attempt to reconstruct ninth grade
mathematics, but such texts were regarded as coming up short. In a perusal of the cited text I found
that basic algebra was as formal, rule bound, and manipulative as one would expect in a text designed
to train students in algebra.

The contentious relationship continued on after Rugg and Clarke’s 1918 study, this time directed
toward Harold Rugg’s social study textbooks. Rugg eventually became one of a small group of
progressive educators at Teachers College, Columbia University where he published a social study
textbook in 1929 from a social-justice perspective titled, “Man and his changing society,” that
became widely used. Being a social studies textbook, it was appropriate that there was a focus on
social problems in the Unites States and the author encouraged students to explore potential
solutions. Rugg was eventually accused of socialism and conservative patriotic business groups who
did not want school children raising questions about the capitalistic economic system censured his
books.

By the end of the decade Rugg's books and several others were condemned by the American
Legion, the Advertising Federation of America, and the New York State Economic Council. In
1940, in a speech to the leaders of the oil industry, H.W. Prentis, the President of the National
Association of Manufacturers (NAM), complained that public schools had been invaded by
"creeping collectivism" through social science textbooks that undermined youths' beliefs in
private enterprise."!

Progressive education was repudiated and, during the decade of the 1950’s, it disintegrated as an
identifiable movement in education.” Although the movement may have disintegrated, that doesn’t
mean that the involved principles died with it.

Mathematics Education 1950-1970: The Era of Modern Mathematics

After World War II, wide spread concern for the state of the education of scientists and engineers
emerged when compared with that of the Russians. As a result, the mathematics community became
integrally involved in the reeducation of college teachers of mathematics (Price, 1988). The concern
soon shifted to the education of precollege mathematics (and science) teachers, especially after the
Soviet Union launched Sputnik I in October of 1957. Buttressed by the National Science
Foundation, a concerted effort was made by several mathematicians to upgrade the precollege
mathematics curriculum in order to educate college capable students (CEEB, 1959; Price, 1988).
Classical idealism (the doctrine that reality, or reality as we can know it, is fundamentally mental)
replaced empiricism as the dominant philosophical position among the reformers and mathematics
textbooks were written from the point of view of a mathematician’s mathematics (e.g., Allendoerfer
& Oakley, 1959; School Mathematics Study Group, 1965).

However, among the curriculum reformers the belief was, and it still is by most contemporary
mathematicians, that mathematics is discovered rather than invented by human beings (Stolzenberg,
1984). So, despite a major shift from empiricism to idealism, Cartesian epistemology was still the
prevailing epistemology of the curriculum developers and others primarily involved in the modern
mathematics movement, including researchers in mathematics education. Behaviorism was rejected
and problem solving along with learning by discovery became the major psychological emphases
(Polya, 1945, 1981) for which Wertheimer’s* (1945) work on productive thinking served as a basic
psychological rationale. Wertheimer considered productive thinking, or the solving of problems, as
based on insight and criticized reproductive thinking such as repetition, conditioning, and habits, all
of which are emphasized in behaviorism.
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Teaching Modern Mathematics

Interestingly enough, during the modern mathematics movement of the 1960’s, mathematics
teachers in the main did not change their traditional, behavioristic ways of teaching mathematics.
There were at least three reasons for this state of affairs. First, mathematics teachers were not
knowledgeable about what was purported to be the psychological emphases of the modern
mathematics programs. Institutes for mathematics teachers were held, but the institutes did not offer
courses on problem solving or learning by discovery. The primary emphasis in the institutes was on
upgrading the mathematical preparation of mathematics teachers.™ Second, the modern curricula
emphasized mathematical structure and the logical, deductive presentation of ideas rather than
problem solving and learning by discovery.™ There were minimal attempts to psychologize the
subject matter in these ways, which was a major oversight because of the influence textbooks have
on the classroom teaching of mathematics. Finally, behaviorism is a common sense psychology.
Although I would say that few mathematics teachers, including myself, had a working knowledge of
Thorndike’s psychology of arithmetic or algebra, or of behaviorism more generally, being held
accountable for four or five classes of 25-35 students per class can easily lead a teacher to using
common sense psychology in teaching without being reflectively aware of doing so. What I mean by
a common sense psychology is amply demonstrated in the following citation from an introduction to
Thorndike’s psychology of algebra.

Suffice it to say here that it emphasizes the dynamic aspect of the mind as a system of
connections between situations and responses; treats learning as the formation of such
connections or bonds or elementary habits; and finds that thought and reasoning—the so-called
higher powers—are not forces opposing those habits but are those habits organized to work
together and selectively. (Thorndike, Cobb, Orleans, Symonds, Wald, & Woodyard, 1926, p. v)

Piaget’s Genetic Structures as a Psychological Rationale

It is very interesting that Piaget’s genetic structures and stage theory of cognitive development
served as a psychological rationale for the modern mathematics programs at the elementary school
level (Bruner, 1960). This was primarily due to the logical-mathematical structural emphasis in the
modern mathematics programs that left the programs without a psychological rationale. Piaget’s
constructivism did not serve as an epistemological basis for the modern mathematics programs nor
was it even emphasized in a conference devoted to Piaget’s work and the modern programs that was
held at Cornell University in 1964 (cf. Ripple & Rockcastle, 1964). Instead, the interest was in
Piaget’s stage theory and his formalizations of the thinking of children within the stages as can be
seen by Bruner’s (1960) citation of Bérbel Inhelder, Piaget’s close collaborator, in The Process of
Education:

Basic notions in these fields are perfectly accessible to children of seven to ten years of age,
provided that they are divorced from their mathematical expressions and studied through material
the child can handle himself. (p. 43)

Inhelder’s idea was that children in the concrete operational stage™ were ready to learn, and indeed
could learn, “basic notions in these fields”. This idea served as the basis of Bruner’s (1960) famous
concept of the readiness to learn the basic structures of mathematics:

Any subject can be taught effectively in some intellectually honest form to any child at any stage
of development. (p. 33)

Bruner (1960), however, conflated basic structures of mathematics and Piaget’s genetic structures
when he referred to “less able students”:
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Good teaching that emphasizes the structure of the subject is probably even more valuable for the
less able students than for the gifted ones. (p. 9)

By “less able students,” I take Bruner as referencing children in Piaget’s preoperational stage,
children who’s thinking was not explained by Piaget’s Grouping structures. In this quotation, he
seemed caught in Cartesian anxiety.

[Cartesian anxiety] is an anxiety that permeates all metaphysical and epistemological questions
concerning the existence of a stable and reliable rock upon which we secure our thoughts and
actions. As Bernstein explains: “Either there is some support for our being, a fixed foundation
for our knowledge, or we cannot escape the forces of darkness that envelope us with madness,
with intellectual and moral chaos (p. 18).” (Konold & Johnson, 1991, p. 2)

In spite of using Piaget’s psychology as a rationale for the emphasis on mathematical structure,
Piaget was considered to be an observer rather than a teacher, and the elasticity of the limits of
children’s minds was not considered as having been established:

These reformers (and I speak now not only of SMSG) have been so successful in teaching
relatively complex ideas to young children, and thus doing considerable violence to some old
notions of readiness, that they have become highly optimistic about what mathematics can and
should be taught in the early grades. (Kilpatrick, 1964, p. 129)

I had no problem with Kilpatrick’s assertion for children who were in Piaget and Inhelder’s more
advanced concrete operational stage.™ But I did not accept Bruner’s famous hypothesis about the
readiness to learn for the “less able” children nor did I accept Kilpatrick’s assertion for children in
Piaget’s preoperational stage. Consequently, the way in which Piaget’s grouping structures might be
relevant in the mathematics education of children became a major problem for me soon after I earned
my Ph.D. from the University of Wisconsin in 1966. At that point, research in mathematics
education was still based in empiricism and to work scientifically meant to use experimental and
statistical methods (Stanley & Campbell, 1963) in the test of hypotheses in a way that was quite
similar to Thorndike and Woodworth’s classical experiment.

Applying Piaget’s Psychology

After joining the Department of Mathematics Education in 1967, I turned to working for a period
of approximately eight years in an attempt to reject Bruner’s famous hypothesis concerning the
readiness to learn mathematics for children who were in Piaget’s pre-operational stage. In this effort,
I functioned as an experimental researcher with little awareness that Piaget (1980) rejected
empiricism.

Fifty years of experience has taught us that knowledge does not result from a mere recording of
observations without a structuring activity on the part of the subject. (Piaget, 1980, p. 23)

My efforts were directed toward applying Piaget’s psychology in the mathematics education of
preoperational children in a “scientific” manner. Although I experimentally rejected Bruner’s
readiness hypothesis for these children (e.g., Steffe, 1966, 73), the children rather forcefully taught
me that I had no insights into the psychology of their mathematical thinking (Steffe, 2012). I
considered myself as doing pseudo-science and making only accretional progress if I was making
any progress at all. The relationships with the mathematics students that I taught as a mathematics
teacher was missing. That is, my contributions to the mathematical thinking and reasoning of the
children who were my “subjects” in the experiments was not being realized.

So, rather than rely on Piaget’s Grouping structures as a psychology of the child, I returned to my
identity as a mathematics teacher and taught two classes of first-grade children over the course of a
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school year so the children could teach me how they think when engaging in mathematical activity
(Steffe, Hirstein, & Spikes, 1976).*" The involved children taught me that counting was their
primary and spontaneous way of operating in discrete quantitative situations and that counting could
have quite different meanings for different children. Piaget had not explained children’s counting, so
this finding corroborated abandoning attempts to apply Piaget’s psychology in children’s
mathematical education. It also led to throwing off the straight jacket that controlled experimentation
and statistical methodology had on my conception of doing science in mathematics education. In
fact, it led to developing the teaching experiment as a method of doing research and using teaching as
a method of scientific investigation (Cobb & Steffe, 1983; Steffe, 1983; Steffe & Thompson, 2000b;
Steffe & Ulrich, 2013).

The shift to using teaching as a method of scientific investigation was a major shift in doing
research and, to my knowledge, at the time it was unprecedented in the United States. I learned later
that researchers in the Academy of Pedagogical Sciences in the USSR had already used versions of
teaching experiment in their work (Kilpatrick & Wirszup, 1975-1978). Not only did their work
provide academic respectability for what then was a major departure in the practice of research in
mathematics education in the United States, it was also a departure in the goals of the research. In
El’konin’s (1967) assessment of Vygotsky’s (1978) research, the essential function of a teaching
experiment is the production of models of student thinking and changes in it.

Unfortunately, it is still rare to meet with the interpretation of Vygotsky’s research as modeling,
rather than empirically studying, developmental processes. (El’konin 1967, p. 36)

So, the new problem that faced me was to construct explanations of the mental processes that are
involved in children’s counting and, further, to construct explanations of how children might
construct those mental processes. I had constructed a typology of the units children create in
counting that they taught me. However, I could not explain the processes that are involved in
children’s construction of these unit types other than Piaget’s account of children’s construction of
what he called arithmetical units (Piaget & Szeminska, 1952). That is, I realized that it was I who
had to construct a psychology of the mathematical children that I taught rather than attempt to apply
a psychology that had been constructed for a different purpose. That was a major breakthrough in
my conception of what it meant to do research in mathematics education.

Mathematics Education 1970-2000: The New Progressive Educators

Interdisciplinary Research on Number

The modern mathematics era ended circa 1970 and behaviorism came roaring back into
mathematics education. When von Glasersfeld and I started to work on the project, Interdisciplinary
Research on Number (IRON), he had just published his manifesto on radical constructivism (von
Glasersfeld, 1974) and it was his intention to start an epistemological revolution that would eliminate
the duality between mind and reality in Cartesian epistemology. It was also his intention [and mine]
to countermand the stranglehold that behaviorism once again had on mathematics education
throughout 1970’s and 1980°s. Radical constructivism emerged as an epistemology in mathematics
as well as in science education (e.g., Driver, 1995) throughout the 1980°s and played a role similar to
that of progressive education during the first one half of the century. But the role was essentially
based on von Glasersfeld’s (1989) first principle that, “knowledge is not passively received but
actively built up by the cognizing subject” (p. 182) rather than on the research that we were doing in
IRON. In fact, I frequently was told that joining radical constructivism was like joining a political
party. Few progressive educators appreciated the implications von Glasersfeld’s (1989) second
principle that, “the function of cognition is adaptive, and serves in the organization of the experiential
world, not the discovery of ontological reality” (p. 182), which was the “radical” part of radical
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constructivism that eliminated the Cartesian dualism between mind and reality (von Glasersfeld,
1974, 1984).

The Standards Movement and the “Math Wars”

Mathematics education was a conceptual wasteland during the 1970’s, so it was no surprise that
another crisis in education emerged that was marked by the publication of 4 Nation at Risk (National
Commission on Excellence in Education, 1983). Influenced by this newly perceived crisis, the
constructivist revolution, and the recommendation that problem solving be the focus of school
mathematics in the 1980’s (National Council of Teachers of Mathematics, 1980), the standards
movement in mathematics education officially began in 1989 with the publication of the Curriculum
and Evaluation Standards for School Mathematics (CESSM; National Council of Teachers of
Mathematics, 1989). The influence of Cartesian epistemology was still strong among the progressive
educators, so CESSM was a strange mixture of realism and constructivism in spite of the commission
claiming a constructivist view of learning, where learning was thought to, “occur through active as
well as passive involvement with mathematics” (CESSM, p. 9).

The National Science Foundation funded ten curriculum projects based on the CESSM that were
published circa 2000, curricula that unfortunately became known as “constructivist curricula.” The
publication of these curricula extended the famous “math wars” between conservative
mathematicians and progressive mathematics educators that erupted in California (cf. Klien,
http://www.csun.edu/~vemthOOm/). The “math wars” had their origin in the 1985 California
Mathematics Framework (California State Department of Education, 1985). This framework,

[W]as considered a progressive document—an antecedent of the 1989 NCTM Standards.
California’s professional teacher organization, the California Mathematics Council, was one of
the most progressive teacher organizations in the country, and one of the most enthusiastic
adopters of the spirit of the 1989 Standards. When the next adoption cycle came, the 1992
California Mathematics Framework (California State Department of Education, 1992) “pushed
the envelope” a good deal further: it emphasized reform, focusing on “mathematical power” and
collaborative and independent student work while de-emphasizing traditional skills and
algorithms. (Schoenfeld, 2007)

The attempts of the constructivist curricula writers to focus on student work were realized in part
through their social agenda, “Mathematics for All,” and concomitantly, how they regarded
mathematics learning and teaching. In this agenda, it was assumed that all students could learn the
mathematics specified in the content standards of CESSM.

If all students do not have an opportunity to learn this mathematics, we face the danger of
creating an intellectual elite and a polarized society. The image of a society in which a few have
the mathematical knowledge needed for the control of economic and scientific developments is
not consistent either with the values of a just democratic system or with its economic needs.
(CESSM, 1989, p. 9)

The social agenda of the writers of the so-called constructivist curricula was based on social
constructivism (Bauersfeld, 1995, 1996; Cobb & Yackel, 1996, Voight, 1989). The orientation that
shaped the social agenda and the recommendations for teaching is cogently caught in a comment
made by Bauersfeld (1995) that, “We can understand the development of mathematizing in the
classroom ‘as the interactive constitution of a social practice’” (p. 150). This sociological emphasis
is compatible with von Glasersfeld’s (1989) first principle of radical constructivism if “interactively”
is included in “actively.” It doesn’t, however, take into account von Glasersfeld’s (1989) second
principle. The reason is that, although interaction is a fundamental assumption in radical
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constructivism, there are two types of interaction: within subject and between subject interaction
(Steffe & Thompson, 2000a). The social constructivists emphasize between subject interaction and
make few attempts to model what might go on inside of the heads of children, which is where
learning and development take place.

The social agenda served to exacerbate the dissatisfaction the mathematical critics had with the
“constructivist” curricula.

[T]here is a unifying ideology behind “whole math.” It is advertised as math for all students, as
opposed to only white males. But the word all is a code for minority students and women (though
presumably not Asians). In 1996, while he was president of NCTM, Jack Price articulated this
view in direct terms on a radio show in San Diego: “What we have now is nostalgia math. It is
the mathematics that we have always had, that is good for the most part for the relatively-high
socioeconomic anglo male, and that we have a great deal of research that has been done showing
that women, for example, and minority groups do not learn the same way. They have the
capability, certainly, of learning, but they don’t. The teaching strategies that you use with them
are different from those that we have been able to use in the past when ... we weren’t expected to
graduate a lot of people, and most of those who did graduate and go on to college were the anglo
males.” (Klein, 2000)

Klein went on to say that; “I reject the notion that skin color or gender determines whether students
learn inductively as opposed to deductively and whether they should be taught the standard
operations of arithmetic and essential components of algebra” (Klein, 2000). So, not only did Klein
critique the standards in CESSM and the mathematics that was involved in the “constructivist”
curricula, he was also a critic of how teaching was conceptualized and practiced. Essentially, the
“math wars” were reminiscent of the contentious relationship between conservative patriotic business
groups and progressive educators concerning Rugg’s social science textbooks.

Mathematics Education 2000 and Forward: Outcome-Based Education
Klein’s rejection of the standards and the social agenda of the constructivist curricula writers
foreshadowed the mission of the Common Core State Standards for Mathematics (CCSSM)
(National Governors Association for Best Practices and Council of Chief State School Officers,
2010). The release of the CCSSM helped thaw the “math wars” (Lobato, 2014; Norton, 2014)
primarily, in my view, because of the presence of more rigorous curriculum standards. We find the
following statement in the introduction to CCSSM.

The standards are designed to be robust and relevant to the real world, reflecting the knowledge
and skills that our young people need for success in college and careers. With American students
fully prepared for the future, our communities will be best positioned to compete successfully in
the global economy. The Common Core State Standards provide a consistent, clear
understanding of what students are expected to learn, so teachers and parents know what they
need to do to help them (CCSSM, 2010, Introduction).

The CCSSM, similar to the CEEB in 1969, was designed primarily for college bound students.™
It has carried the emphasis on outcome-based education forward to the present time, whose
beginning was marked in mathematics education by the publication of the CESSM in 1989. It might
seem surprising that I would say that CESSM ushered in outcome-based education given that it also
was an impetus of the constructivist curricula that was so severely criticized in the “math wars”.
However, one of the main criticisms of the “constructivist” curricula and CESSM by the
mathematicians was that the involved standards were weak, not that there were not any standards.
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Outcome-based education is based on Cartesian epistemology with its requirement that
something is true only if it corresponds to an independent, objective reality, where the standards
constitute that objective reality. The neo-behaviorism of outcome-based education along with the
national emphasis on standards-based education by the No Child Left Behind Act of 2001 has had
the effect of standardizing precollege mathematics education. For example, students are required to
take standardized test throughout their years in school™ and these tests are used in evaluating
teachers, a practice that has become known as Value Added Measures [VAM’s] of teacher
performance. This surge of neo-behaviorism in mathematics education during the first years of the
21* century is exemplified in the report of the National Mathematics Advisory Panel (2008) with its
emphasis on rigorous scientific research. The research conducted in IRON concerning children’s
number sequences and fraction schemes and how they are used in the construction of adding,
subtracting, multiplying, and dividing schemes that has been published in books and various articles
(e.g., Steffe, von Glasersfeld, Richards, & Cobb, 1983; Steffe & Cobb, 1988; Steffe, 1992; Steffe &
Olive, 2010) was not even mentioned in that report. So, obviously, the authors of the report did not
consider that research as scientific research if they considered it at all.

Given the ubiquity of the influence of outcome-based education, one might think that there
should be another major effort by progressive educators to countermand that influence similar to the
era of the modern mathematics programs or to the era of the constructivist curricula. While that may
be of critical importance given the current state of mathematics education in precollege education,
essentially the attempted wholesale changes in mathematics education that were made following
national reports were abandoned after the changes led to major disappointments and failures. If this
history can be used to predict what might happen if another round of national reform in mathematics
education is attempted, a strong argument can be made that what is needed is to construct
mathematics curricula for children that is based on the mathematics of children rather than continue
on with the historical practice of basing mathematics curricula for children on the first-order
mathematical knowledge of adults. Simply put, if lasting progress in mathematics education is to be
made, researchers must establish the construction of mathematics curricula for children as an
academic field. I think of constructing mathematics curricula for children that is based on the
mathematics of children as a result of intensive and longish periods of teacher/researcher interactions
with children. Toward that end, I present several radical constructivist research programs that are
tailored toward constructing mathematics curricula for children that emerge from the work in IRON.
Before presenting the programs, I present several basic concepts that I feel will help understand the
research programs.

Radical Constructivist Research Programs

Basis Concepts

First- and second-order models. 1 understand children’s mathematics as a result of maturation
coupled with what children have constructed as a result of interacting in their social-cultural milieu in
all of its aspects. The assumption that children construct mathematical knowledge is an assumption
of an observer.**"" Children’s mathematics is thought of as first-order knowledge, which are, “the
hypothetical models that the observed subject constructs to order, comprehend, and control his or her
own experience (Steffe, et al., 1983, p. xvi). An observer psychologizes children’s mathematics by
constructing second-order models, which are, “the hypothetical models observers may construct of
the subject’s knowledge in order to explain their observations (i.e., their experience) of the subject’s
states and activities” (Steffe et. al. 1983, p. xvi). The second-order models are referred to as the
mathematics of children and the children’s first-order models are referred to as children’s
mathematics.™" The concept of children’s mathematics is based on the belief that mathematics is a
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product of the functioning of human intelligence (Piaget, 1980). The mathematics of children, which
is an explanation of children’s mathematics, is a legitimate mathematics to the extent that
teachers/researchers can find rational grounds to explain what children say and do.

Epistemological analysis and conceptual analysis. Conceptual analysis is the method by
which the second-order models that constitute the mathematics of children are produced. Conceptual
analysis is an analysis of mental operations. In explaining conceptual analysis, von Glasersfeld
(1995) drew from his experience with Silvio Ceccato’s Italian Operational School, whose goal was
to, “reduce all linguistic meaning, not to other words, but to ‘mental operations’” (p. 6). The main
goal of conceptual analysis is defined by a question from Ceccato’s group: “What mental operations
must be carried out to see the presented situation in the particular way one is seeing it?” (p. 78).
Thompson & Saldanha (2000) reformulated the goal in a way that is more relevant to constructing
second-order models of children’s language and actions. Their goal is to describe, “conceptual
operations that, were people to have them, might result in them thinking the way they evidently do”
(p. 315). Although I have extensively engaged in conceptual analysis in the construction of the
mathematics of children, I know of no papers that have been written that address the problem of how
one might creatively use the analytical tools that are available in radical constructivism in conceptual
analysis of children’s mathematical concepts and operations.

When conceptual analysis is used in the construction of second-order models, I refer to it as a
second-order conceptual analysis. Thompson & Saldanha (2000) included what I refer to as first-
order conceptual analysis in their discussion of epistemological analysis, that is, an analysis of one’s
own mathematical concepts and operations (cf. Thompson, 2008). According to Thompson &
Saldanha (2000), epistemological analysis, “is used to model what might be called systems of ideas,
like systems of ideas composing concepts of numeration systems, functions and rate of change, or
even larger systems like those expressed in quantitative reasoning” (p. 316). First-order conceptual
analysis is inextricably involved in second-order conceptual analysis of children’s mathematical
language and actions. Thompson & Saldanha (2000) also included a teacher/researcher analyzing
their own concepts and operations relative to children’s concepts and operations in interactive
mathematical communication. This kind of analysis involves the teacher/researcher operating as
Maturana’s (1978) second-order observer; that is, an “observer’s ability through second-order
consensuality to operate as external to the situation in which he or she is, and thus be observer of his
or hers circumstance as an observer (p. 61).

In the following quotation, if “intentionally isomorphic” is interpreted as imputing operations to a
mathematically operating child, what I said about making explanations is similar to Maturana’s
second part of the scientific method.

As scientists, we want to provide explanations for the phenomena we observe. That is, we want
to propose conceptual or concrete systems that can be deemed to be intentionally isomorphic to
(models of) the systems that generate the observed phenomena. In fact, an explanation is always
an intended reproduction or reformulation of a system or phenomenon. (Maturana, 1978. p. 30).

Maturana’s second part of the scientific method emphasized second-order conceptual analysis
and his first part emphasized first-order conceptual analysis, which was, “observation of a
phenomenon that, henceforth, is taken as a problem to be explained” (Maturana, 1978, p. 29). Of the
observer, he commented,

Yet we are seldom aware that an observation is the realization of a series of operations that entail
an observer as a system with properties that allow him or her to perform these operations, and,
hence, that the properties of the observer, by specifying the operations that he or she can perform
determine the observer’s domain of possible observations. (Maturana, 1978, p. 30)
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Like Maturana, I take the subject dependent nature of science in mathematics education as a starting
point. But I expand on it in two ways. First, the primary reason for engaging children as a
teacher/researcher is to allow children to teach one how and in what ways they operate
mathematically and, as commented by Thompson & Saldanha, to create operations that if a child had
those operations, the child would operate as observed. Second, as a teacher/researcher kind of
scientist, my contributions to children’s ways and means of operating mathematically by teaching
them is a constitutive part of a conceptual analysis of children’s mathematical language and actions.
In the words of Steier (1995);

Approaches to inquiry ... have centered on the idea of worlds being constructed ... by inquirers
who are simultaneously participants in those same worlds. (p. 70)

This understanding of the subject dependent nature of science in mathematics education provides
researchers with the power to create images of unrealized possibilities in the mathematics education
of children. But these possibilities are subject to the constraints of children as self-organizing
systems—the mind organizes the world by organizing itself (Piaget, 1935/71).

Learning and development. A central goal that runs throughout each research program is to
learn how to operationalize children’s mathematics learning and development as spontaneous
processes in mathematics teaching. A virtue of teaching that is focused on constructive itineraries of
children’s mathematics in which the teacher/researcher is a participant is that it allows the
teacher/researcher to become aware of children’s constructive processes, which are understood as the
construction of schemes and the accommodations that children make in them (cf. von Glasersfeld,
1980). Because of continual interaction with children, a teacher/researcher is likely to observe at
least the results of those critical moments when restructuring is indicated by changes in children’s
operations and anticipation (Tzur, 2014). Major restructuring of mathematical schemes is compatible
with a vital part of Vygotsky’s (1978) emphasis on studying the influence of learning on
development.

Unlike Vygotsky, however, I regard both learning and development in the context of
accommodations that children make in their schemes (Steffe, 1991b). But there is a difference in the
two kinds of accommodations. Learning is captured by the functional accommodations that occur in
a scheme in the context of the scheme being used, whereas development is captured by metamorphic
accommodations that occur independently in no particular application of a scheme. A
metamorphosis of a scheme is thought to be the result of autoregulation of the process of
interiorizing the scheme (cf. Simon, Saldanha, McClintock, Akar, Watanabe, & Zembat, 2010, for a
related view).

Learning and development are not spontaneous in the sense that the provocations that occasion
them might be intentional on the part of the teacher/researcher. In children’s frames of reference,
though, the processes involved are essentially outside of their awareness. This is indicated by the
observation that what children learn or develop often is not what was intended by the
teacher/researcher. It also is indicated when a child learns or develops when a teacher/researcher has
no such intention. Even in those cases where children learn what a teacher/researcher might intend,
the event that constitutes learning arises not because of the teacher’s actions. Rather, teaching
actions only occasion children’s learning (Kieren, 1994). Learning as well as development arises as
an independent contribution of the interacting children. So, although I do not use “spontaneous” in
the context of learning and development to indicate the absence of elements with which children
interact, I do use the term to refer to the non-causality of teaching actions, to the self-regulation of
the children when interacting, to a lack of awareness of the learning process, and to its
unpredictability. Because of these factors, I regard learning and development as spontaneous
processes in children’s frame of reference.
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Trajectories of the constructive activity of children. The construction of trajectories of
children’s learning and development is one of the most daunting but urgent problems facing
mathematics education today. It is also one of the most exciting problems because it is here that we
can construct an understanding of how teacher/researchers can profitably affect children’s
mathematics (Steffe, 2004). By building an understanding of children’s mathematical concepts and
operations and how a teacher/researcher can engage children to bring forth changes in those concepts
and operations, a vision of children’s mathematics education can emerge in which children engage in
productive mathematical learning and development and teacher/researchers engage in productive
mathematical teaching. The principle of self-reflexivity™ compels teacher/researchers to consider
their own knowledge of children’s mathematics, including accommodations in it, as constantly being
constructed as they interact with children as the children construct mathematical knowledge. Through
the construction of trajectories of children’s learning and development that are coproduced by
children and teacher/researchers, it is possible to construct trajectories that include an account of
teacher/researchers’ ways and means of acting and operating relative to children’s ways and means
of acting and operating (Ellis, 2014). Such an account entails the teacher/researcher operating as a
second-order observer.

A trajectory of children’s learning and development includes a model of the children’s initial
concepts and operations, an account of children’s constraints and necessary errors, an account of the
observable changes in children’s concepts and operations as a result of their interactive mathematical
activity in situations that are used by a teacher/researcher when interacting with children, an account
of the situations relative to a teacher/researcher’s models of the involved children’s mathematics and
the teacher/researcher’s goals and intentions, and an account of the involved mathematical
interactions. A similar historical account of what transpires in between observed changes is critical
not only to understand the changes, but also to provide estimates of the length and the nature of the
plateaus in children’s mathematical learning and/or development.

Trajectories of the constructive activity of children are third-order models that include the
second-order models that constitute the mathematics of children, the first-order models of the
teacher/researcher, and relationships between them. In the following research programs that I
present, I assume that the models that constitute the mathematics of children produced by IRON will
be used at least as starting places in the construction of the trajectories. Because of the nature of the
trajectories, I will refer to them as mathematics curricula for children throughout the rest of the paper
(Steffe, 2007). Concentrating on constructing mathematics curricula for children does not exclude
research programs that center on teacher/researchers working with classroom teachers of
children.™ In fact, each stated research program can be reformulated so that it is a research
program that involves teacher/researchers working with classroom teachers of children.

The First Research Program

The first research program is to construct mathematics curricula for children who enter their
first grade as counters of perceptual unit items over the course of their first eight years in
school.™

The second-order models that were constructed in IRON concerning children’s number
sequences and how the number sequences are used in the construction of adding, subtracting,
multiplying, and dividing schemes have been published in books and various articles (e.g., Steffe, et.
al., 1983; Steffe & Cobb, 1988; Steffe, 1992; Steffe & Olive, 2010). Ulrich (2015-16) has published
two very readable papers that provide an introduction to the units, schemes, and operations that were
constructed in IRON as well as to some of the work that has extended the basic work (e.g.,
Hackenberg, 2013; Hackenberg & Lee, 2015; Hackenberg & Tillema, 2009; Hunt, Tzur, &
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Westenskow, 2016; Norton & Wilkins, 2013; Tillema, 2013; Ulrich, 2012). To start, I provide a
brief summary of the first two stages in the construction of children’s number sequences.

The first stage is a sensory-motor or pre-numerical stage that comprises pre-counters, counters of
perceptual unit items (CPUI), and counters of figurative unit items (CFUI). Counters of perceptual
unit items are restricted to counting items that are in their perceptual field, such as the toys in their
toy box, their steps, their heartbeats, or the chimes of a Grandfather clock. For example, an
interviewer covered six of nine marbles with his hand and asked Brenda, a six-year-old child, to
count all the marbles. Brenda first counted the interviewer's five fingers and then counted the three
visible marbles. The interviewer pointed out that he had six marbles beneath his hand and Brenda
replied, “I don't see no six!” (Steffe, & Cobb, 1988, p. 23)

Counters of figurative unit items might attempt to count the items in a closed container when told
that there are, say, seven items in the container, by touching the container where they believe items
might be hidden in synchrony with uttering number words. Because they concentrate on generating
images of the items they are counting, they can easily become lost in counting and stop fortuitously.
Counting figurative unit items is a step in interiorizing the countable items, which produces abstract
unit items (Steffe et.al, 1983). If the child also interiorizes the acts of counting, I mark this
monumental event by referring to it as the stage of the initial number sequence (INS). Spontaneously
counting-on is the indication of the INS (Steffe, & Cobb 1988).

To illustrate some of the constraints that I experienced when teaching CPUI, I recount my
experience teaching three such children at the start of their first grade in school. I taught them
approximately 60 times in teaching episodes over their first two school years to explore their
progress in the construction of counting-on (Steffe, & Cobb, 1988). Although these children also
participated in their regular mathematics classrooms, they did not spontaneously count-on in spite of
my best efforts to provoke it and, presumably, the best efforts of their teachers. It wasn’t until their
3" Grade that at least one of them had constructed counting-on. Based on my experience in working
in teaching experiments and teacher education at UGA and data that were supplied to me by
Professor Bob Wright of Southern Cross University, Australia, who started the Mathematical
Recovery Program (Wright, Martland, & Stafford, 2000; Wright, Stewart, Stafford, & Cain, 1998), 1
estimate that 40% of entering first graders in the United States are CPUI. Of this estimate, Professor
Wright commented that, “I think that is a good estimate for the number in the perceptual stage or
lower, that is the children who can't yet count perceptual items. I think the percentage would be
lower in Australia and New Zealand, say about 30%” (Personal Communication).

Of the 40% who enter the 1% Grade as CPUI, I expect that a majority of them to construct
counting-on during their 3™ Grade [Wright estimated that from 5 to 8% might not be counting-on by
the 3 Grade]. From that point on the relative percentages are not certain, but because of the length
of time and the great difficulties we had in teaching experiments in engendering progress beyond
counting on (Biddlecomb, 2002, Hackenberg, 2005; Tillema, 2007), my best estimate is that
approximately 30% of the children entering the 6™ Grade will be only able to count-on. And those
who are at that stage will remain there until their 8" Grade. Wright’s estimate was, “that about 30%
of kids entering the 6th Grade in the US will only be able to count-on” (Personal Communication).

I consider this program as the most important research program in mathematics education today.
My appeal to those who choose to work in such an intractable but crucial research program is to learn
how to teach these children in such a way that they do not lose confidence. My practitioner’s maxim
is that children are never wrong; even children who are CPUI. An adult can easily induce “mistakes”
in these children, but my basic and pervasive assumption is that children are rational beings and our
responsibility is to find ways of acting and interacting that are not only harmonious with their ways
and means of operating, but will also affect them in productive ways. It is crucial to re-establish the
NCTM’s vision of mathematics for all.
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The Second Research Program

The second research program is to construct quantitative mathematics curricula for children
who enter their first grade as CFUI or children who can only count-on (1) in the construction of
operative measuring schemes, and (2) in the construction of adding and subtracting schemes as
reorganizations of their operative measuring schemes during their first two grades in school.

Children who enter their first grade as CFUI have a quite different constructive trajectory than
those who enter as CPUI. It is possible for CFUI to construct the INS by means of a metamorphic
accommodation by the end of their first grade in school (Steffe & Cobb, 1988, pp. 308ff). By the end
of the second grade, it is possible for their INS to undergo another metamorphic accommodation in
the construction of the explicitly nested number sequence (ENS), which is indicated when children
spontaneously count-up-to (Steffe, 1992, 94: Steffe & Cobb, 1988).

There are three principal operations of the ENS that were not available to children who have
constructed only the INS. The first is that units of one have been constructed as iterable units; for
example, at noon a grandfather clock strikes one twelve times in contrast to simply making 12
chimes. The second is that any initial segment of a (finite) number sequence can be disembedded—
“lifted”— from the complete sequence without destroying the sequence.™" The remainder of the
initial segment in the sequence can be also disembedded from the sequence and the numerosity of the
remainder can be found by counting its elements starting with “one.” This way of counting is
referred to as the recursive property of the ENS in that children can take the number sequence as its
own input (Steffe & Cobb, 1988). That is, children who have constructed the ENS can willfully
create their own countable items using elements of their number sequence and count these elements
using the same number sequence that was used to create the countable items. It is as if the child has
two number sequences “side by side,” one to use to create countable items and the other to count the
countable items. ENS children have more “mathematical power” than do INS children, to borrow a
phrase from the California Mathematics Framework. So, there are three distinct stages in children’s
construction of their number sequences entering their first grade in school; CPUI, CFUI and the INS,
and the ENS. There is a more advanced number sequence that only rarely can be observed that is
referred to as the generalized number sequence (GNS; Ulrich, 2014, 2016)

My best estimate is that children who enter their first grade as CFUI or who can only count-on
comprise 45% of the first-grade population. Table 1 contains my best estimates of the percent of
children who enter their first grade in each of the three number sequence types. The question of
whether stage shifts can be engendered by means of specialized interactions has been

Table 1: Number Sequence Type Across Grades for Children Who Enter their First Grade
Counting-on (INS) or as CFUL.

Grade/N Seq. CFUI or INS ENS GNS

First ~ 45 Percent ~ 10 to 15 Percent ~ (0 to 5 Percent
Second ~ 30 Percent ~ 25 to 30 Percent ~ (0 to 5 Percent
Third ~ 5 Percent ~ 45 to 50 Percent ~ (0 to 10 Percent

worked on by Norton and Boyce with an eleven-year old child (2015). These authors did
demonstrate that by working intensively with the child individually in 14 teaching sessions, he did
make progress in reasoning from one level of units (INS) to two levels of units (ENS). The authors
note, however, that,
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Cody did not seem able to coordinate units in continuous contexts in the same way he could in
discrete contexts... We conjecture that that limitation is due to the lack of physical referents for
the embedded units within composite units that are continuous. For example, a tablespoon
contains three teaspoons, but these three units are not as evident within the tablespoon as they
would be with three chips within a cup. Rather, students have to produce the units within a
continuous composite unit through some kind of segmenting or partitioning activity (Steffe,
1991a), which involves breaking down the composite unit. (Norton & Boyce, 2015, p. 229)

Children who have constructed the ENS and, hence, two levels of units, do use their number
concepts spontaneously in partitioning continuous units. So, there is always an issue of the
generality of the learning process when the situations used in the teaching experiment are with only
one type of quantity. According to some authors, a fundamental question that pervades mathematics
education today is whether mathematical thinking begins with counting or with comparisons of
quantity (Sophian, 2007). Based on the work of Davydov (1975) and influenced by Doughtery
(2004), Sophian (2007) commented that, “The most fundamental idea I have derived from those
papers is the idea that mathematical thinking begins, not with counting, but with comparisons
between quantities, in particular the identification of equality and inequality relationships” (p. xiv).
This notion of quantity is based on Davydov’s (1975) formal definition that a quantity is any set for
the elements of which criteria of comparison have been established. However, establishing the
quantitative property of a composite unit called its numerosity and the quantitative property of a
continuous item called its length precedes a need for comparing the numerosity of two collections or
the length of two continuous items (Steffe, 1991a). So, it’s not a matter that mathematics begins with
comparisons between quantities be they discrete or continuous. Rather, one might say that
mathematics begins with establishing the quantitative properties of objects (Steffe, 1991a). This fits
with Thompson’s (1994) notion of a quantity as, “composed of an object, a quality of that object, an
appropriate unit or dimension, and a process by which to assign a numerical value to the quality” (p.
184). This idea of quantity, both discrete and continuous, leads to the following reorganization
hypothesis.

Reorganization Hypothesis: Operative measuring schemes and their use in constructing adding
and subtracting schemes can emerge as reorganizations of children’s INS.™"

In this hypothesis, the main goal is for children to use their INS in measuring activity in order to
transform the measuring activity, such as described in CCSSM standard 1.MD.2 stated below, into
operative measuring schemes and to what Thompson, Carlson, Byerley, & Hatfield, (2014) referred
to as additive measurement.

Express the length of an object as a whole number of length units, by laying multiple copies of a
shorter object (the length unit) end to end; understand that the length measurement of an object is
the number of same-size length units that span it with no gaps or overlaps. Limit to contexts
where the object being measured is spanned by a whole number of length units with no gaps or
overlaps.

It is important to note that this CCSSM standard is written in such a way that emphasizes the activity
of measuring. After actually measuring linear objects to establish how to measure and the units used
in measuring, INS children can engage in operational measuring activity such as finding the length
of a 64-inch string after it is increased by seven inches. If operational measuring is generalized
across other quantities such as time, money, temperature, weight, etc., children can construct
operational measuring schemes that they could use as if they were using the INS in discrete
quantitative situations. They could also be asked to find, say, how many tablespoons of powder
could be made from nine teaspoons of powder to engender the construction of composite units—or
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units of units—which, at this point, I consider as essential in engendering a metamorphosis of the
“INS measuring schemes.” Furthermore, in the case of discrete quantity, children construct adding
and subtracting schemes as reorganizations of their number sequences (Steffe, 2003). So, by the
children using their INS in the construction of operative measuring schemes, they can in turn use
their measuring schemes in the construction of operative adding and subtracting schemes across
different quantitative contexts. My hypothesis is that if a stage shift is observed from an INS to an
ENS measuring scheme in the case of one type of quantity, a corresponding stage shift will be
observed in all of the measuring schemes that the INS was used in establishing. Such a constructive
generalization would lead to considerable mathematical power of the children, to borrow a phrase
from the California standards.

For children who are CFUI, engaging in measuring activity that includes counting activity
extends the goals, situations, activities, and results of their figurative counting schemes. Similar to
the INS children who use their counting schemes in measuring activity, the effects of the CFUI using
their figurative counting schemes in measuring activity is yet to be determined. Still, it is possible
that their measuring activity could serve in engendering metamorphic accommodations like that
which produces the INS (cf. Steffe, & Cobb, 1988, pp. 306 ff) if for no other reason than a
teacher/researcher could capitalize on children’s need to measure things in such a way that provokes
monitoring re-presentations of measuring activity.

The Third Research Program

The third research program is to construct quantitative mathematics curricula for ENS™
children in the construction of extensive quantitative measuring schemes and their use in

constructing adding, subtracting, multiplying, dividing, and numeration schemes in which
strategic reasoning and relationships between quantities are of primary importance.

I agree with Smith & Thompson (2007) that an emphasis on quantitative reasoning needs to
begin early on in children’s mathematics education and that building quantitative reasoning skills for
the majority of students is not a one or two-year program. Their paper concerned how a shift in
current school curricula could emphasize quantitative reasoning, whereas my emphasis is on
constructing a quantitative mathematics for children based on abstractions from actually teaching
children to establish learning trajectories in the sense that Ellis (2014) explained. In this context, it is
critical to understand what schemes can be considered as extensive quantitative schemes, which I
refer to as genuine measuring schemes. Rather than think of extensive quantities as substances as
would be the case when considering 5/4 as referring to a point on the number line, von Glasersfeld &
Richards (1983) pointed out that Gauss focused on extensive quantities as relations.

To forestall the idea that the extensive quantities he is referring to are a matter of inches or
degrees, Gauss hastens to add that mathematics does not deal with quantities as such, but rather
with relations between quantities. These relations he calls “arithmetical” and in arithmetic, he
explains, quantities are always defined by how many times a known quantity (the unit), or an
aliquot part of it, must be repeated in order to obtain a quantity equal to the one that is to be
defined, and that is to say, one expresses it by means of a number” (pp. 58-59).

The ENS is the first numerical counting scheme that qualifies as an extensive quantitative
scheme in that any number such as 50 can be conceived of as one fifty times as well as 50 ones. The
other operations of the ENS are also critical in constituting this scheme as an extensive discrete
quantitative measuring scheme. So, by viewing the construction of measuring schemes more
generally as reorganizations of the operations that produce the ENS, the hypothesis is that the
measuring schemes will emerge as extensive quantitative schemes.
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The Fourth Research Program

The fourth research program is to construct quantitative mathematics curricula for children in
(1) the construction of quantitative measuring schemes as reorganizations of their fraction
schemes,™" and (2) the construction of multiplicative and additive measuring schemes as
reorganizations of their fraction schemes.

A reorganization hypothesis that was fundamental in the work of IRON that centered on
children’s construction of fraction schemes was that children’s fraction schemes can emerge as
accommodations in their numerical counting schemes. The fraction schemes that emerged were of a
different genre than the number sequences that were used in their construction primarily because
children used their number sequences (or concepts) in partitioning in their construction of fraction
schemes.™" Two basic fraction schemes that emerged were the partitive and the iterative fraction
schemes.

The partitive fraction scheme. When ENS children use their number concepts in partitioning,
they establish an equi-partitioning scheme (Steffe & Olive, 2010, p. 75ff). For example, when the
number concept five is used in partitioning a candy bar, say, an estimate can be made of where to
mark off one of five equal parts. Once a mark is made, the child can disembed the marked part
(mentally or physically), use it in iterating to make five equal parts, and mentally compare the five
parts to the original bar to test if the five parts together are equivalent to the original bar. If a child
considers that the disembedded part is one out of five equal parts, or a fifth of the candy bar, this
produces the first genuine fraction scheme that is referred to as the partitive fraction scheme (PFS;
Tzur, 1999).

The iterative fraction scheme and fractional numbers. For children who have constructed the
ENS and the PFS, it would seem that the CCSSM Standard 4.a under Number and Operations—
Fractions would be appropriate for these children.

Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to
represent 5/4 as the product 5%(1/4), recording the conclusion by the equation 5/4 = 5x(1/4).

This standard was meant to illustrate how multiplying a fraction by a whole number might be
modeled by a mathematics teacher in a straightforward way. But it doesn’t explain the operations
that are involved in children constructing fractions as fractional numbers. There is a scheme in the
fractional knowledge of children, the iterative fraction scheme (IFS), where the fraction 5/4 is
constituted as a fractional number; as five times one fourth of the candy bar (Steffe, & Olive, 2010,
p. 333ff). The structure of the “candy bar” produced consists of a unit of units of units. That is, as a
composite unit containing a composite unit comprised by 4/4 of the candy bar and one more partitive
unit fraction. Once constructed, children can use the scheme to produce fractional connected number
sequences {1/4,2/4,3/4,4/4, 5/4, 6/4, ...} that are constructive generalizations of their explicitly
nested number sequence (Steffe, & Olive, 2010, p. 333ff) . This is the first fraction scheme that can
be judged as an extensive quantitative scheme. The PFS constructed using the ENS is still
constrained to the fractional whole. The construction of fractional numbers is not in the zone of
potential construction of the children who have constructed the PFS in any short-term sense because
it involves a stage shift from two to three levels of units coordination.

The splitting scheme. The splitting scheme, which is a reorganization of the equi-
partitioning scheme, is used in the construction of fractional numbers. The splitting scheme is
indicated when children can mentally produce a hypothetical stick that can be iterated seven times
when given a stick and told that the given stick is seven times longer than their stick and are asked to
make their stick. After the splitting scheme is constructed, if a child mentally splits a stick into, say,
48 parts, the child knows that one of the parts would be one forty-eighth of the whole stick because
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the whole stick is 48 times as long as the part. The result of the scheme is an inverse multiplicative
relation between the part and the partitioned whole in the sense that Gauss specified extensive
quantitative relations (cf. also Thompson, & Saldana, 2003).

Assessments of fifth through eighth grade children. With this brief introduction to the PFS
and the IFS, I now turn to assessments of fifth, sixth, seventh, and eighth grade children concerning
these schemes. Norton & Wilkins (2009) found that only 34% of the fifth graders and 35% of the
sixth graders in their sample could engage in splitting, which is an indication of the presence of the
operations that produce three levels of units™". Of those same children, only 14% and 20%,
respectively, provided some indication of having constructed the iterative fraction scheme.™™ In
other assessments, Norton & Wilkins (2010) found that only 13% of their seventh grade sample and
19% of their eighth grade sample could produce the fractional whole when given, say, a stick
partitioned into three parts and told that it was three sevenths of a candy bar and asked to draw the
whole candy bar, which I consider as an assessment of fractional numbers.”™ 1In their earlier study
Norton & Wilkins (2009) reported similar percentages for their fifth and sixth grade samples (14%
and 18%). These data are consistent with an analysis of the percentages of children at one, two, and
three levels of units that I present in Table 2 in which Norton’s and Wilkins’ data are included.

Table 2: Estimated Percent of Children at Each Level of Units by Grade

Grade/Level One Level Two Levels Three Levels IFS
Third 45 45 10

Fifth 35 40 25 (34%)NV (14%) ™V
Sixth 30 30 40 (35%)NV (18%) ™V
Seventh (13%) ™
Eighth (18%) ™"

It is especially disconcerting that only approximately 15.5% of Norton & Wilkins’ seventh and
eighth grade sample indicated that they had constructed a fraction as a multiplicative concept. It’s
disconcerting because, based on my own estimates, at least 40% of this sample should be able to
construct a fraction as a multiplicative concept; that is, they should have been able to construct the
IFS. But this expectation is tempered by the realization that the children in the fractions project
constructed the iterative fraction scheme by working with us in teaching experiments. The fraction
standards of the CCSSM are stated by grade level and as such underestimate what children who have
constructed three levels of units can accomplish. On the other hand, children who have constructed
two levels of units are constrained to constructing the PFS, a scheme that children use to construct
proper fractions. What this means is that approximately 45% of the third-grade population, 40% of
the fourth grade population, and 30% of the sixth grade population are able to construct partitive
fractions, but not fractional numbers. When combined with the children who have constructed only
one level of units throughout these three grade levels, we see that approximately only 15% of the
third graders, 25% of the fourth graders, and 40 percent of the sixth graders will be able to construct
the IFS and engage in producing fractional numbers.

Recommendations of the NMAP. Children’s construction of fractions as well as the teaching
of fractions must be changed. In the report of the National Mathematics Advisory Panel (2008), the
following comment was made.
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Difficulty with learning fractions is pervasive, and is an obstacle to further progress in
mathematics and other domains dependent on mathematics including algebra. ... Conceptual and
procedural knowledge about fractions with magnitudes less than 1 do not necessarily transfer to
fractions with magnitudes greater than 1. Therefore, understanding of fractions with magnitudes
in each range needs to be taught directly and the relation between them discussed. (p. 28)

Apparently, the authors of this report believed that fractions (proper and improper) can be taught
directly to children regardless of the levels of units the children have constructed. The report of the
panel, as [ interpret it, exemplifies an empiricist as well as a neo-behavioristic agenda in the teaching
of mathematics in precollege education that harks back to Thorndike’s influence on the teaching of
mathematics during the first one-half of the last century. Still, I do agree with the writers of the
report concerning the pervasive difficulty that the learning of fractions presents to schoolboys and
schoolgirls and also to the pervasive difficulty that the teaching of fractions presents to their
mathematics teachers. Resorting to direct teaching in an attempt, for example, to raise children who
have constructed only the PFS to the IFS could be interpreted as a more or less empirical enterprise
and as generating a whole industry of empirical research on mathematical learning, to paraphrase
Michael Cole’s (2004) comments concerning the training studies of the 1960’s that were conducted
to prove Piaget wrong. In contrast, for the children who have constructed at least the partitive
fraction scheme, my hypothesis is that quantitative measuring schemes can emerge as reorganizations
of children’s fraction schemes.

This hypothesis is similar to the hypotheses in the second and third research programs that
additive measuring schemes can be constructed as reorganizations of children’s number sequences.
It is quite different, however, in that partitioning is a fundamental operation in the construction of the
measuring schemes, which opens the way for children to construct measuring schemes involving two
levels of units; for example, meters and centimeters, minutes and seconds, pounds and ounces, weeks
and days, etc. Measuring systems in multiple levels of units might still be problematic. It is
especially crucial to investigate possible changes that indicate fundamental transitions between
reasoning with two levels of units and three levels of units induced in the construction of quantitative
measuring schemes and their use in the construction of multiplicative and additive measuring
schemes.

The Fifth Research Program

The fifth research program is to construct quantitative mathematics curricula for children in
their construction of the rational numbers of arithmetic and the rational numbers, and the
schemes and operations entailed in and by these constructions.

Fractional numbers are a major achievement of children who can use three levels of units as
assimilating operations, but fractional numbers are not equivalent to the Rational Numbers of
Arithmetic nor to the Rational Numbers. Constructing the rational numbers of arithmetic involves
the operations that generate the generalized number sequence (cf. Ulrich, 2014, p. 256). To
exemplify those operations, an eight-year old child, Nathan, was presented with copies of a string of
three toys and a string of four toys and asked to make 24 toys. Nathan reasoned out loud as follows,

Three and four is seven; three sevens is 21, so three more to make 24. That’s four threes and
three fours! (Steffe & Olive, 2010, p. 278)

In solving the task, Nathan integrated a unit of three and a unit of four into a unit of seven, iterated
the unit of seven three times to produce 21, increased 21 by three to produce 24, disunited 21 into
three threes and three fours, integrated the additional three with the three threes, and produced four
threes and three fours. These operations are operations of a GNS. In a GNS, any composite unit can
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be taken as the basic unit of the sequence in such a way that the composite unit implies the sequence
just as the unit of one implies the ENS. Similar to the ENS, in the GNS a child can establish two
number sequences “side by side”, a sequence of units of three and a sequence of units of four and
combine the basic units of each sequence together to produce another sequence of units of seven.
What this amounts to is the coordination of two three-levels of unit structures.

The rational numbers of arithmetic can be regarded as those operations that can be used to
transform a given fraction into another given fraction; that is, the operations that are involved in
quotitive fraction division. Quotitive fraction division involves the coordination of two three-levels
of units structures; units within units within units. For example, consider a case where a child is
given a segment that is said to be 1/5 of a unit segment and another segment that is said to be 1/3 of
the same unit segment, and asked to use the 1/3-segment to produce the 1/5-segment. If the child
partitions the 1/3-segment into five parts, takes one of these parts as a 1/15-segment and iterates this
segment three times to produce the 1/5-segment, and if the child abstracts the operations as 3/5 of
1/3, then 3/5 is referred to as a rational number of arithmetic. After operating, I would also want to
know if the child knows that 3/5 of the 1/3-segment is the 1/5 segment without actually taking 3/5 of
the 1/3-segment. I would also want to know if the child can engage in reciprocal reasoning and
understand that 5/3 of the 1/5-segment is the 1/3-segment (Hackenberg, 2010, 2014; Thompson &
Saldanha, 2003; Thomson, et. al., 2014).XXXi The child is aware of the operations needed, not only to
reconstruct the unit whole from any one of its parts, as in the case of fractional numbers, but also to
produce any fraction of the unit whole starting with any other fraction, which are the operations
involved in quotitive fraction division. (cf. Olive, 1999, for an interpretation of the schemes and
operations involved in the production of the rational numbers of arithmetic). My hypothesis is that
construction of the rational numbers of arithmetic entails a metamorphic accommodation relative to
fractional numbers, and learning how to engender this accommodation and the constructive
possibilities it entails is included in the first part of the fifth research program.

One might think that the distinction between the rational numbers of arithmetic and the rational
numbers is “simply” that the latter involve negative as well as positive rational numbers of
arithmetic. But that is not the case at all. My hypothesis is that a scheme of recursive distributive
partitioning operations is involved in constructing rational numbers. In general, distributive
partitioning operations are those operations that allow a student to share n units among m people and
interpret one share as n/m of one unit and as 1/m of all n units (Liss, 2015; Steffe, Liss, & Lee, 2014;
Lamon, 1996). Distributive partition operations are involved in what Thompson et al. (2014)
referred to as “Wildi Magnitudes”. The power of Wildi’s definition of magnitude is that it makes
explicit the fact that, “the magnitude of a quantity is invariant with respect to a change of unit”
(Thompson, et. al., 2014, p. 4). So, if a quantity measures 22 inches, and if there are 12 inches/foot,
then the quantity also measures 22inches/(12 inches/foot), whose transformation into 22*(1/12 foot)
or 22/12 feet involves rational number of arithmetic operations. It also involves use of a scheme of
recursive distributive partitioning operations because, according to Thompson (2014), “When a
person anticipates that any measurement of Q™™ with respect to an appropriate unit can be expressed
in any other (emphases added) appropriate unit by some conversion without changing Q’s
magnitude, she possesses Wilde’s meaning of magnitude” (p. 4)

When the scheme of recursive distributive partitioning operations can be used to produce what I
would consider an equivalence class of fractional numbers, I would judge that the child has
constructed a rational number. " T hypothesize that the construction of the rational numbers
constitutes a stage shift relative to the rational numbers of arithmetic, and learning how to engender
this stage shift and the constructive possibilities it entails is included in the second part of the fifth
research program. The scheme of recursive distributive partitioning operations that is involved in the
construction of rational numbers is also involved in the construction of intensive quantity (Liss,
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2015; Steffe, et al., 2014). The main difference is that intensive quantity involves relative
magnitude, which means that a quantity is measured using a quantity of a different nature
(Thompson, et al., 2014). In the case of rational numbers, a quantity is measured using a unit
quantity of the same nature as the quantity to be measured.

The Sixth Research Program

The sixth research program is to construct quantitative mathematics curricula for children in
their construction of integers and rational numbers as measures of change in an unsigned
quantity, where “unsigned” refers to the magnitude of the quantity, and operations with them.

Based on work by Thompson & Dreyfus (1988), Ulrich (2014) defined an integer as a measure of
change in an unsigned quantity, where “unsigned” refers to the magnitude of the quantity.
Concerning integer addition, Ulrich (2014) commented that,

Unlike in unsigned addition, in which the second addend can have a different quality than the
first addend, the addends in this case need to be of the same type in the mind of the student.
Depending on the relative magnitudes, the sum could be a subsequence of either addend. ... I
hypothesize that a student will need to have constructed the GNS in order to conceptualize
addition in this way, precisely because both addends need to be reified composite units (which
seems to correspond to iterability and the ability to disembed while maintaining a nested
relationship) so that the sum can be disembedded from either addend (p. 256).

Ulrich’s hypothesis concerning the operations that are needed to construct integer addition leaves
open the question of the operations that are needed to construct the concept of an integer other than
her comment concerning “reified composite units.” I interpret the meaning of a “reified composite
unit” in terms of Thompson’s (1994) hypothesis that, “an integer is a reflectively abstracted constant
numerical difference” (p. 192). So, Ulrich’s hypothesis concerning the operations needed to
construct integer addition also pertains to the construction of the concept of integers. Although it
might seem unusual that the operations needed to construct integers are two steps beyond the
operations that are needed to construct the natural numbers of the ENS as extensive quantities, all of
the operations of the ENS have to be reorganized and extended to produce an integer as a difference
of two such natural numbers. That is, as a reflectively abstracted concept, an integer is the difference
of any two signed quantities a and b, denoted by a — b, such that a — b is a constant number of units
between @ and b in the direction from b to a. This concept of an integer is crucial in algebraic
reasoning and should not be finessed by using the sum of a and the additive inverse of b as the
definition of a difference a — b like it is done in CCSSM.

I extend this way of regarding integers to the construction of signed rational numbers, where
rational numbers are regarded as magnitudes in the way that [ regard them in the above text. Based
on my experience teaching middle school children in teaching experiments as well as teaching
prospective middle school mathematics teachers, finding sums and differences of signed quantities
whose magnitudes are rational numbers will require at least a constructive generalization of integer
operations. Furthermore, although the product and quotients of signed quantities are rarely
considered in studies of children’s mathematics, they are fundamental as preparation for more
general algebraic reasoning and involve constructive generalizations of rational number of arithmetic
operations. Constructive trajectories also need to be established in which students establish the laws
of signs for products as a logical necessity as well as patterns of reasoning that might be recognized
as distributive, associative, and commutative reasoning.

Finally, because of the preponderance of children who are yet to construct the rational numbers
of arithmetic or even fractional numbers in the middle school and beyond, it is essential to explore
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what a quantitative mathematics curricula involving signed quantities might look like for children
who have constructed only three levels of units. This problem is especially acute for children who
have constructed only two levels of units.

The Seventh Research Program

The seventh research program is to construct quantitative algebraic curricula for children in the
construction of basic algebraic knowing.

The first aspect of the program is to learn the operations that are involved in children’s
construction of combinatorial reasoning. My hypothesis is that the concept of natural number
variable is essential. Even children who can reason with three levels of units make extensive lists
when finding the possible outcomes of two or more events that occur together rather than reason with
compositions of natural number variables (Panapoi, 2013). Further, my hypothesis is that the
multiplicative principal of combinatoiral reasoning and the dimensionality involved in spatial
coordinate systems (Lee, 2017) both involve recursively coordinating two three levels of units
structures. Lockwood ( 2015), in her work with college students, and Panapoi (2013) and Tillema
(2007, 2013, 2014), in their work with middle grade students of differing levels of units, have made
substantial progress in this program. But extensions of their work are needed to establish
mathematics curricula for children involving combinatorial reasoning across differing levels of units.

The second part of this research program is to extend the fifth and sixth research programs to
working with operations on quantities of unknown measurements, which could be considered as
“generalized arithmetic.” An extensive quantitative unknown refers to the potential result of
measuring a fixed but unknown extensive quantity before actually measuring it (Liss, 2015, p.30).
An intensive quantitative unknown refers to the potential result of enacting the operations that
produce a fixed but unknown equivalent ratio. The production of such a ratio implies the availability
of the operations needed to produce an equivalent ratio and, thus, a proportional relationship (Liss,
2015, pp. 31-32). Hackenberg (2005, 2010, 2013, 2014), Hackenberg & Tillema (2009), Hackenberg
& Lee (2015), and Liss (2015) have made substantial progress in this program by working with
students of differening levels of units. An extension of this work is needed so that quantitative
algebraic curricula for children are established across differing levels of units.

The third part of this research program is highly related to the second part. It is to construct
quantitative algebraic curricula for children concerning the construction of the basic rate scheme and
its use in the construction of linear functions. Given two co-varying quantities, I consider a rate as
the result of enacting the operations that produce a ratio equivalent to a unit ratio at any but no
particular time (Steffe, et al., 2014, p. 52). The basic rate scheme can be considered as a
metamorphosis of intensive quantitative unknowns and proportional reasoning. One might consider
the result of enacting a rate formally as an equivalence class of ratios, but that doesn’t say anything
about the involved metamorphic accommodation that produces rate. Toward that end, Thompson’s
(1994) commented that, “A rate is a reflectively abstracted constant ratio, in the same sense that an
integer is a reflectively abstracted constant numerical difference” (p. 192). Although I agree with
this way of thinking about a rate, it too doesn’t specify the operations that children use to produce the
reflective abstraction. There are various studies that contribute to understanding such mental
operations (Ellis, Ozgiira, Kulowa, Williams, & Amidonba, 2015; Hackenberg, 2010; Hackenberg &
Lee, 2014; Johnson, 2012, 2014; Liss, 2015; Moore, 2014, Thompson, 1994; Tillema, 2013). But
how teacher/researchers might provoke such a reflective abstraction is a fundamental problem in
establishing quantitative algebraic curricula for children across differing levels of units.
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Endnotes

"I surmise that, in part, it was because of what was considered as sufficient to falsify a theory
during that period of time. According to Lakatos (1970) all justificationists, “whether the
intellectualists and empiricists, agreed that a ‘hard fact” may disprove a universal theory” (p. 94).

i Thorndike considered himself a connectionist, which I regard as a form of behaviorism, but not
radical behaviorism.

i There was also an emphasis on social interaction, active citizen participation in all spheres of
life, and democratization of public education.

¥ Comment in brackets is added to the quotation.

¥ (http://www.eds-resources.com/facultytheory.htm)

" (http://schugurensky.faculty.asu.edu/moments/1938rugg.html)

Y (http://www.uvm.edu/~dewey/articles/proged.htm)

Vil Wertheimer was one of the three founders of Gestalt psychology along with Kurt Koffka and
Wolfgang Kohler.

T attended a sequential summer institute for secondary school mathematics teachers during the
summers of 1961, 62, and 63 at Kansas State Teachers College, Emporia, Kansas. There were no
courses on teaching via problem solving that emphasized discovery learning by students although we
did solve a lot of mathematical problems!

* James W. Wilson offered a course on problem solving for MEd and Ph.D. students at the
University of Georgia for many years.

* There were modern programs that did emphasize experiential learning of mathematics (Davis,
1990).

*I Pjaget’s grouping structures served as an abstracted model of the reasoning of children in what
Piaget called the concrete operational stage.

*iil piaget thought that the construction of the length unit was more advanced than the
construction of the arithmetical unit.

VT am indebted to Dr. Larry Hatfield for his colleagueship and insight that led us to teach 1*' and
2" grade children in order to learn children’s thinking.

* A mathematician writer of the content standards told me that the standards are designed so that
students can take college mathematics courses.

™ In some cases, students can opt out of taking these tests.

il In constructivist research, Maturana’s concept of the observer is essential. According to
Maturana (1978), “Everything said is said by an observer to another observer who can be himself or
herself” (p. 31).

Wi «Students” can be substituted for “children”. I use “children” throughout the paper to be
consistent.

X Self-reflexivity involves applying one’s epistemological tenets first and foremost to oneself.

* Cf. Student-Adaptive Pedagogy for Elementary Teachers: Promoting Multiplicative and
Fractional Reasoning to Improve Students’ Preparedness for Middle School Mathematics, Dr. Ron
Tzur, Principal Investigator.

i Cf. AIMS Center for Math and Science Education

il Cf. the work of Dr. Robert Wright’s US Math Recovery Council.

il Twenty-nine, say, can be disembedded from fifty while leaving it “in” fifty.

IV In stating this hypothesis, I assume that in the case of continuous quantity, children will
primarily use units like inches, pounds, etc., in segmenting.

¥ This research program is not restricted to six-year-old children.

*¥ Cf. Hackenberg, Norton, & Wright (2016) for an excellent start on this problem.
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i A number concept such as five is a composite unit containing five arithmetical unit items
containing records of counting “1, 2, 3,4, 5.”

¥ Hackenberg (2007) found that some children who constructed only two levels of units could
engage in splitting.

X These authors referred to this scheme as the generalized measurement scheme for fractions
(GMSF).

* These authors referred to this scheme as the measurement scheme for proper fractions
(MSPF).

*xi Reciprocal reasoning of the kind Thompson, et al. (2014) identified involves coordinating two
three-levels of units structures.

*xi () is taken as 22 inches in length.

*i 1 did not observe a child construct what might be called an equivalence class of fractions
even in the case of the GNS children (Steffe, & Olive, p. 3371Y)
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THREE FACETS OF EQUITY IN STEFFE’S RESEARCH PROGRAMS
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The NCTM research committee made a recent, urgent call for mathematics education researchers to
“examine and deeply reflect on our research practices through an equity lens.” With this in mind, we
use this paper to reflect on the ways in which Steffe’s work has contributed to three facets of equity.
We also suggest opportunities for researchers working within this framework to deepen their
commitments to issues of equity.
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The percentages that Steffe (2017) gives in his plenary paper are alarming because they indicate
that current standards, and curricular materials based on these standards, are insufficient for a large
percentage of students in grades K-8. For example, a majority of students entering 6™ grade are not
structuring number and quantity in ways that are required for the significant multiplicative reasoning
that is the target of most middle school mathematics standards and curricular materials (e.g.,
developing proportional reasoning, an understanding of rates, etc.). For us, this phenomenon is
fundamentally an issue of equity: As it stands, current standards and curricular materials are
inequitable if they do not meet the learning needs of a significant number of elementary and middle
school students.'

So, we take this opportunity to discuss Steffe’s research in relation to the NCTM Research
Committee’s recent, urgent call for mathematics education researchers to “examine and deeply
reflect on our research practices with an equity lens” (Aguirre et al., 2017, p. 125). We start with the
important caveat that Steffe has not explicitly analyzed the ways in which race, culture, ethnicity,
gender, and socio-economic status impact learning opportunities for students in school mathematics
either at a broad level or in his specific interactions with students. This caveat may lead some
mathematics education researchers to simply dismiss Steffe’s work; after all, isn’t this omission
simply another way of saying that Steffe has studied mathematics teaching and learning using a
colorblind framing that does not account for contextual or cultural factors in the teaching and
learning process? We think that this conclusion is far too dismissive given Steffe’s: a) profound
commitment to unpacking what he terms students’ mathematics; b) his drive to work with
cognitively diverse students over long periods of time to learn this mathematics; and c) his repeated
pushes to interrupt dominant discourses about what mathematicians, mathematics education
researchers, and curriculum writers think should constitute school mathematics (e.g., Steffe, 1992,
1994; Steffe & Olive, 2010). We see this paper, then, as an opportunity to reflect on the ways that
Steffe’s research addresses facets of equity, as well as a space to call for researchers using similar
frameworks to deepen their commitment to issues of equity in the context of critiques of de-
contextualized and/or colorblind framings of mathematics teaching and learning (e.g., Martin,
Gholsson, & Leonard, 2010; Martin, 2009).

In our view, Steffe’s research addresses at least three critical facets of equity: positionality and
power relations, what counts as mathematics, and access and achievement. We start with an overview
of how Steffe’s research addresses these facets of equity. Then we provide data excerpts to illustrate
each facet of equity. The excerpts are of middle school students who have interiorized one level of
unit because their mathematical ways of operating are rarely reflected in current curricula and
standards.
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Three Facets of Equity

Positionality and Power Relations

In sociology, positionality refers to the “occupation or adoption of a particular position in relation
to others, usually with reference to issues of culture, [race], ethnicity, or gender” (Oxford Dictionary
on-line). Those who articulate their positionality are articulating their stance or viewpoint on
themselves, others, and interaction between people, often with respect to societal identifiers. In his
research, Steffe articulates his stance on himself as a teacher/researcher and on those with whom he
interacts (students). This stance starts with self-reflexivity, which is a version of Gutiérrez’s mirror
test (2016): “The principle of self-reflexivity compels teacher/researchers to consider their own
knowledge of children’s mathematics, including accommodations in it, as constantly being
constructed as they interact with children as the children construct mathematical knowledge,” where
“Self-reflexivity involves applying one’s epistemological tenets first and foremost to oneself” (2017).

Although this positionality does not address culture, race, ethnicity, or gender, we argue that it
does address relations of power between a teacher and students. As Cobb (2007) points out, Steffe’s
research paradigm is an actor-oriented perspective, concerned with “small scale” human interactions
that are useful (although not sufficient) for instructional design at the classroom level, not an
observer-oriented “large scale” view of societal structures that focuses on how people participate (or
are barred from participating) in cultural practices. So, the power that Steffe addresses has to do with
power relations in student-teacher relationships. Although some may see that as a limited view of
power from the perspective of social science more broadly (e.g., Foucault), it nevertheless bears
directly on the idea that power is intertwined with knowledge and that those in power (including
mathematics education researchers) are those who determine what we count as knowledge.

Steffe’s orientation is that his own mathematics (his own first-order knowledge) is insufficient to
understand children’s mathematics (their first-order knowledge). For example, Steffe states: “I
usually find it inappropriate to attribute even my most fundamental mathematical concepts and
operations to children” (2010b, p. 17). Instead of doing that, he positions students as rational
mathematical thinkers who have mathematical knowledge to which he does not have direct access.
Steffe positions himself, as a teacher/researcher, as someone who must learn from children “how and
in what ways they operate mathematically” (2017) and who must “create operations that if a child
had those operations, the child would operate as observed” (2017). This statement is a statement
about making a second-order model of a student’s thinking (the mathematics of students), which he
views as mathematical knowledge—as legitimate mathematics. Indeed, for Steffe, second-order
knowledge is social knowledge co-constructed by him and children (2010b). Thus, the students with
whom he interacts have power to determine what we count as knowledge—in fact, students are
primary in his student-teacher relationships because he could not learn students’ mathematics (i.e.,
create the mathematics of students) without interacting with them. This stance positions students as
the generators of knowledge.

What Counts as Mathematics

There are numerous examples of the creation of second-order knowledge in Steffe’s research,
starting with the five counting sequences that model how children undergo significant
reorganizations in creating and structuring units and quantity in their construction of what we call
whole numbers (e.g., Steffe & Cobb, 1988; Steffe, von Glasersfeld, Richards, & Cobb, 1983). In this
paper we give an example of fractional knowledge that Steffe learned from students: the partitive
fraction scheme (Steffe, 2002, 2010a). Often standards documents and curricular materials define
fractions as parts out of wholes (e.g., 4/5 is four parts out of five parts) or as multiples of unit
fractions (e.g., 4/5 is 4 x 1/5) (CCSSM, 2010). These definitions do not reflect students’ ways and
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means of operating as they construct fractional knowledge because they omit a lot and, as Steffe
(2017) points out, they may ask students to conceive of fractions in ways that are not within their
current possibilities in the near term (cf. Norton & Boyce, 2013).

Students who have interiorized only two levels of units have the potential to construct partitive
fraction schemes (Steffe, 2010a). Students who construct this scheme create fractions from iterating
(repeating) a unit fraction some number of times. So, for example, if asked to draw 4/5 of a granola
bar they partition the bar into five equal parts and then take one of those parts four times. This
activity looks like these students see 4/5 as 4 x 1/5—they are repeating 1/5 four times, after all.
However, the 4-part bar that is the result of their activity is, for them, four parts out of five parts—it
has a part-whole meaning. So, when these students are asked to draw 7/5 of a granola bar, they will
often object that doing so does not make sense because you can’t take seven parts out of five (Olive
& Steffe, 2001). Constructing partitive fractions is an advance over fractions conceived of only as
parts in relation to wholes. However, students who have constructed only partitive fraction schemes
do not yet see fractions as consisting of sequences of fractional numbers (e.g., 1/5, 2/5, 3/5, 4/5, 5/5,
6/5, 7/5, etc.), as Stefte (2017) points out. In addition, students who have constructed partitive
fraction schemes have just begun to think of fractions as measurable extents—they have not
completed this process (Steffe & Olive, 2010).

Yet rather than position students who have constructed partitive fraction schemes as deficient or
behind, Steffe argues that these students’ mathematics is a legitimate mathematics that should be the
basis for developing curricula and instruction in schools. That is, he states: “rather than assume a
God-like stance regarding ‘school mathematics,” I assume that I must intensively interact with my
students to learn what their mathematics might be before I can begin to think about what ‘school
mathematics’ might be” (1992, p. 261). He critiques school mathematics texts—even reform texts—
as being based on the writers’ first-order knowledge of school mathematics. This phenomenon

“places the mathematics of schooling outside of the minds of the students who are to learn it
and is manifest in the univocal expression of concepts like multiplication and division. One
searches the school mathematics books in vain for a mathematics of children, and school

mathematics is taken to be the way it is rather than the way students make it to be” (1992, p.

260).

So, Steffe views school mathematics—mathematical knowledge—as something that should be
squarely based on students’ mathematical ideas.

Access and Achievement

In our view, developing curricular tasks and instructional materials for students who have
constructed partitive fraction schemes is about the issue of access. Gutiérrez (2009) characterizes
access to be about

the resources that students have available to them to participate in mathematics, including such
things as: quality mathematics teachers, adequate technology and supplies in the classroom, a
rigorous curriculum, a classroom environment that invites participation, and infrastructure for
learning outside of class hours (p. 5).

She characterizes achievement as about student outcomes, including “participation in a given
class, course taking patterns, standardized test scores, and participation in the math pipeline (e.g.,
majoring in mathematics in college, having a math-based career)” (p. 5). She positions access and
achievement at the ends of the “dominant” axis, and power and identity at the ends of the “critical”
axis in her framework on equity.

Steffe’s research does not directly address some items in Gutiérrez’s (2009) list of resources for
access, such as adequate technology and supplies in the classroom, or infrastructure for learning
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outside of class hours. However, Steffe’s research is about increasing access to mathematical ideas
and participation because it redefines what is being accessed. Rather than position mathematics as
something outside of the minds of students to be accessed, he positions mathematics as being created
by students, and so it is something that they have access to already, in a sense. Thus, his job as a
teacher/researcher to facilitate this access is to create second-order models of students’ ways of
operating that allow him (and others who work in a similar vein) to interact with students so that their
mathematics can surface and so that they can build on their ways of thinking from wherever they are.
And, further, his job is to create learning trajectories, which he refers to as third-order models (2017),
as curricula that would constitute school mathematics. Steffe’s call to base school mathematics on the
mathematics of students means students’ achievement is defined as making progress from where they
are—as learning.

Three Examples

In this section we illustrate each aspect of equity with data of student-teacher interactions. We
aim to paint a picture of what student-teacher interactions based on models of students looks like,
because we argue that, done well, these interactions open significant opportunities for participation
and learning. Although this statement is true for all students, it is striking for those who have
interiorized only one level of unit in middle school, because these students’ ways of thinking are
typically not reflected in or addressed by school mathematics (e.g., Hackenberg, 2013). So, all three
examples in this section are of students who have interiorized one level of unit.

Here we present a few aspects of our second-order models of these students to help readers
interpret the data: Students who have interiorized one level of unit view numbers as composite units
(units of units)—e.g., 5 is five 1s and also one 5. However, for these students there is not a
multiplicative relationship between the units of 1 and composite units. In addition, these students
have yet to construct disembedding operations, whereby they can lift part of a number out of the
number and not destroy the number, e.g., take 10 out of 14 while keeping 14 intact. Since these
students cannot yet disembed, they don’t reason strategically when combining numbers additively.
For example, to determine 14 + 18, they typically count on by 1s from one of the numbers. In
contrast, students who have constructed disembedding operations can separate 14 into 10 and 2 and
2, combine one 2 with the 18 to make 20, and then add on the 10 and 2 to get 32. This strategic
additive reasoning is not in the province of students who have interiorized one level of unit. To make
assessments of students’ levels of units, we often use problems that involve embedded units, as we
demonstrate next.

Power and Positionality: Hal Coordinating one Level of Unit

We examine Hal’s response to the Candy Factory Problem to show what it looks like when a 7™
grade student has interiorized only one level of unit. We then analyze how the teacher positioned
himself in relation to Hal and the impact of this positionality on power dynamics in a student-teacher
relationship.

Candy Factory Problem: A candy factory puts 6 candies in each package, puts 8 packages in
each box, and puts 4 boxes in each crate. Make a picture to show the number of candies in one
crate.

Data Excerpt 1: Hal solves the Candy Factory Problem."
[The teacher reads the problem to Hal. Hal draws Figure 1a.]
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(2) (b) (c) (d)

Figure 1. Hal’s response to the Candy Factory Problem.

T: Okay. What do you got there?

H: A crate.

T: And can you, like, the candies...so it says 6 candies in each package, puts 8 packages in each
box, and puts 4 boxes in each crate. So can you draw what would be inside the crate? [Hal
draws Figure 1b.] So these are your six candies, eight packages, and four crates [points to
each part of Figure 1b]? [Hal nods.]

[The teacher asks Hal to re-read the question. The teacher then asks Hal to draw a single package
containing six candies. The teacher asks Hal to draw a second package, and then a third
package (Figure 1c).]

T: How many packages does it say would be in one box?

H: Eight.

T: Yeah. So could you draw everything that would be in one box?

H: Six candies and eight packages [draws Figure 1d.]

[The teacher returns to asking Hal to draw a fourth package with six candies in it, adding on to
Figure 1c. He then asks Hal how many total candies there would be if he had a fifth package.]

H: Thirty.

T: Thirty? Okay. How did you know it was 30?

H: Because 5 times 6 is 30.

This excerpt illustrates that Hal initially did not consider candies, packages, or boxes to be
contained in a crate—he drew a single crate (Figure 1a). He subsequently drew the candies and
packages outside of the original crate, re-interpreted the one crate as a box, and drew three more
boxes (Figure 1b). These drawings provide indication that he assimilated the situation using a single
level of unit (e.g., a crate or a box or a package or a candy). With support from the
teacher/researcher, Hal established a drawing where candies were contained within packages (Figure
Ic). However, this structure seemed ephemeral for him because when the teacher asked him to use it
to show “everything that would be in one box,” he drew six candies and eight packages, separately,
inside of the box (Figure 1d). Doing so indicates that he did not use a two-levels-of-units structure, a
package containing six candies, when he created his box.

Interestingly, the last part of the excerpt demonstrates that Hal could use multiplication facts to
solve problems—in fact, later in the interview it was evident that he knew and could use many
multiplication facts, which is not atypical for middle grades students, even those that are coordinating
solely one level of unit (Norton & Boyce, 2015). However, this phenomenon does not mean that
“knowing multiplication facts” for students like Hal results from the structure and imagery that is
typically assumed when students use such facts.
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We contend that middle grades students like Hal are often silenced or invisible in the classroom;
they are often positioned as deficient and behind. In fact, even for the teacher/researcher (who was an
experienced middle school teacher), Hal’s response to this problem was surprising, and it took
significant adjustment on his part in order to be responsive to Hal in the moment. Ultimately the
teacher/researcher abandoned the original problem as it was stated in favor of presenting problems
that were related but did not involve all of the levels of units as the original problem. The
teacher/researcher did so because he interpreted his primary goal of interacting with Hal to be to
learn Hal’s mathematics. This goal, when taken seriously, can be quite humbling, because even an
experienced teacher can quickly realize the insufficiency of his or her own mathematical thinking in
bringing forth productive mathematical reasoning on the part of the student. So, positioning oneself
as Steffe (2017) does is not at all a simple challenge for mathematics education researchers.

Indeed, we think such an orientation needs to be learned anew in each student-teacher interaction
in order for mathematics education researchers and teachers to avoid positioning themselves in a
“God-like” role. When a teacher ceases to position themselves as learner (for example, by assuming
they know what a student should learn prior to interacting with a student), they reify their prior
knowledge as the knowledge to be learned rather than entering interactions openly. Notably,
however, this does not mean that teachers or researchers should enter interactions with students
unprepared, but rather with a genuine openness to students’ contributions to these interactions. In the
interaction with Hal, it would have been possible to simply “coach” him through creating a
representation for solving the problem where the teacher would have learned very little about the
structure Hal attributed to the situation. We have witnessed many middle school students who have
interiorized one level of unit experience this kind of coaching in schools.

Expanding What Counts as Mathematics: Kianna solves the Coordinate Points Problem

We turn now to a second 7" grade student who was part of the same study, and who had also
interiorized one level of unit, to examine how she worked through and solved the Coordinate Points
Problem.

Coordinate Points Problem. You have number cards that have the numbers 1 through 8 on them.
You draw a card, replace it, and draw a second card to create a coordinate point (e.g., 1, 2).

a. How many coordinate points could you make? Represent these points as an array.
b. Suppose you added one additional number card that has the number 9 on it. How many
new coordinate points could you make?

In typical curricula this problem could be considered to be about “finding the difference of two
squares”—the difference between 8 and 9°. Successive iterations of this problem (e.g., starting at 9
and adding the 10 card) could open the possibility for students to consider that the difference
between two squares is non-constant, and that the difference of these differences is constant (it is 2).
We suggest that seeing the task as univocally about “finding the difference of squares” elides
students’ mathematics. We use data from Kianna to illustrate what a different characterization
affords in terms of seeing what the challenges and successes were for a student who has interiorized
one level of unit, and how in turn this characterization serves to expand what counts as mathematics.

We anticipated that, for Kianna, creating pairs and taking them as countable items would be a
challenge. Therefore, we asked her to list aloud the new pairs as she was creating them and to keep
track of how many pairs she had created. Kianna started the problem by listing aloud the new
coordinate points, putting up a finger of her left hand each time she said a new coordinate point and
reusing the fingers of her left hand once she had used all five of them. Then the teacher/researcher
asked her how many she had created. Kianna seemed uncertain. She listed several calculations that

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier
Association of Mathematics Teacher Educators.



Plenary Papers 63

she appeared to think were relevant (e.g., 9 + 9 and 9 x 9). Instead of asking her to compute, the
teacher/researcher responded as follows.

Data Excerpt 2: Kianna solves the Coordinate Points Problem.

T: You want to just say them out loud again? You had a pretty cool method before. You want to
just keep using that?

K [smiles]: Yeah. Okay. So, one nine, two nine, three nine, four nine, five nine [puts up a finger
of her left hand each time she says a coordinate point until all five fingers on her left hand are
raised], six nine [she begins to reuse the fingers of her left hand each time she says a
coordinate point], seven nine, eight nine, nine...[is about to say nine-nine, but stops herself]. I
mean, one nine [re-states one-nine instead of saying nine-one], two nine [finishes using the
fingers on her left hand a second time], three nine, four nine, five nine, six nine, seven nine
[finishes using the fingers on her left had a third time], eight nine, nine nine [puts up the
thumb and index finger of her left hand]. That’s twelve new ones. Yeah, that’s twelve.

T: Twelve? Let’s try one more time.

K: Ah. Okay. [Smiles broadly].

T: Do you want to try one more time?

K [emphatically]: Yeah.

T: Okay. You’re so close.

K: Okay. One nine, two nine, three nine, four nine, five nine, six nine, seven nine, eight nine, one
nine, two nine, three nine, four nine, five nine, six nine [is keeping track on her left hand in a
similar manner as the previous attempt]... I said that wrong [realizing she has said one nine,
two nine, instead of nine one, nine two, etc.]. Okay. One nine, two nine, three nine, four nine,
five nine, six nine, seven nine, eight nine, nine one, nine two, nine three, nine four, nine five,
nine six, nine seven, nine eight, nine nine [keeps track in a similar manner on her left hand as
previously]. It would be eighteen?

T: Eighteen. You’re so close.

W: How’d you get eighteen?

K: I was trying to count them on my fingers. I have a problem when I go past fifteen.

T: You’re doing great.

W: Can I ask a quick question?

K: Yeah.

W: How many past fifteen did you get?

K: I think I got two more.

W: Okay. So, what’s two more than fifteen?

K: Seventeen.

W: Yeah.

For Kianna, solving the problem appeared to be both challenging and satisfying. Kianna often
said she did not like mathematics because she could not “see” herself in her mathematics classes. Her
attitude about the interview, however, differed significantly from that: She smiled throughout,
acknowledged and accepted the challenges presented to her, and successfully solved problems that
were hard for her. We argue that this was possible because the teacher/researcher planned activity for
her based on the mathematics of students who have interiorized one level of unit and can make two
levels of units in activity, and he used this model as a basis for being responsive to her in the
moment. For example, he asked Kianna to verbally list the pairs, which meant he supported her to
produce pairs in her activity. He planned this activity for her because creating a pair (coordinate
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point) in activity is similar to creating a two-levels-of-units structure in activity: Both involve
counting two units as a single unit (Tillema, 2013).

After watching Kianna make two attempts at enumerating the pairs, and arriving at 12 and then
18 pairs, the witness-researcher suspected that she was having difficulty coordinating the number of
times she had counted by five on her left hand (three) with the number of left over fingers she had
(two). Her response of 12 likely stemmed from a lack of differentiation of the number of times she
had used all the fingers on her left hand and the two remaining fingers she used—when she reviewed
her activity, she equated the two remaining fingers with the number of times she had used all of the
fingers on her hand (two): Two hands and two leftover fingers would give 12. Her response of 18
likely stemmed from a similar lack of differentiation, except that in this response she seemed to
substitute the three times she used her hand for the number of leftover fingers; three hands and three
leftover fingers would give 18. The witness-researcher interacted responsively with her, assuming
that this might be the conflation that she was making and so supported her to review the number of
leftover fingers she had beyond 15 to determine she had counted 17 coordinate points.

Kianna’s response of 17 coordinate points is numerically equivalent to the difference between 9°
and 8%, However, we think that claiming that she found the difference of two squares does not match
well with Kianna’s mathematics. In fact, we think it conflates the mathematics of the observer with
the mathematics of a student by failing to differentiate between the two.

Instead, we think that Kianna’s problem entailed creating and counting pairs that contained nine
in either the first or second position, where her counting activity involved coordinating the number of
times she used the five fingers on her left hand (three) with the number of leftover fingers she had on
her left hand at the end of her count (two). There was not evidence that she established in a single
structure the total number of pairs that could be created with nine number cards (9?), the number of
pairs that could be created with eight number cards (8°), and the 17 newly created pairs that had the
number nine in either the first or second position. Coordinating these three quantities in a single
structure could be initial evidence for considering a students’ mathematics to be compatible with
something that might be called “finding the difference of two squares.” Even though Kianna did not
do this, her way of operating was fundamentally interesting to us and to her, involved challenging
mathematics for her, and imbued her with a sense of mathematical power—she was a participant in
producing the solution to what she considered a challenging problem.

Access and Achievement: Alyssa’s Work on Symbolizing her Reasoning

We now turn to an example from a different study within a 5-year project to investigate how to
differentiate instruction for middle school mathematics students, as well as relationships between
students’ rational number knowledge and algebraic reasoning. The current phase of the project
involves the second author in co-teaching 25-30 day classroom units with a classroom teacher in
which the teacher and project team design to differentiate instruction. In the first of these classroom
design experiments, the 20-student 8" grade pre-algebra class consisted of five students who had
interiorized one level of unit, 13 students who had interiorized two levels of units, and two students
who had interiorized three levels of units. The focus of the instruction was equivalence in algebraic
contexts, following the Say It With Symbols unit from the 3™ edition of the Connected Mathematics
Project (Lappan et al., 2014).

One of the students who had interiorized only one level of unit, Alyssa, struggled with most of
the ideas in the unit. For example, in class on Day 7 students were learning to factor expressions
based on “reversing” the Distributive Property. To factor 6 + 2x Alyssa wrote 3(2 + x). Even after
two conversations between the second author and Alyssa’s group about what products they were
aiming for, Alyssa still wrote 3(2 + x) while her groupmates had expressions like 2(3 + x). Later, on
Day 14 students were solving an equation to find the break-even point in a situation that involved a

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier
Association of Mathematics Teacher Educators.



Plenary Papers 65

school group selling boxes of greeting cards. Because Alyssa and another group mate were struggling
to solve the equation, the second author worked with them on understanding the situation—finding
the profit when different amounts of boxes were sold: 1, 5, 10, and 20. After seeing that all of these
amounts resulted in losing money, the group mate was ready to increase the number of boxes to find
the break-even point, but Alyssa suggested that they try 3 boxes or 15 boxes. In general, keeping
track of the multiple quantities involved in determining profit (number of boxes, revenue, expenses)
was challenging for Alyssa.

During a mid-unit interview, the second author posed to Alyssa a question similar to one worked
on in class about developing an expression for the amount of money a swimmer raised in a swim-a-
thon, where each sponsor gave the swimmer $10 to start and $2 per lap. There were 15 sponsors.
Alyssa wrote “10 + 2x + 15,” where x was the number of laps. Her rationale was that the swimmer
was getting more, so “then you’re adding, is what I thought.” When asked how much money one
sponsor gave the swimmer, Alyssa suggested “10 x 15 + 2x”, She explained as follows: “the 15 is
how many sponsors and then they start with $10 so I did 10 times 15 to give the amount of money
that she’s getting.” She added the 2x because “for every lap they’re giving her more money.” But
then she was concerned about the $150 because it seemed like too much money from one sponsor.
So, although she had just identified the 150 as coming from 15 sponsors, she then thought it was
from just one.

With questioning support similar to what we have shown in the prior two data excerpts, Alyssa
developed correct numerical responses for the swimmer swimming 4 laps with 1 sponsor and then 2
sponsors. However, she appeared to be “in” the activity of reasoning through these specific outcomes
and did not stand above them in order to abstract a structure that she could represent algebraically.
The second author expected this phenomenon, to some degree, based on her second-order model of
students like Alyssa working on algebraic problems (Hackenberg, 2013). So, the second author drew
from evolving second-order knowledge of Alyssa’s ways of thinking that opened possibilities for
Alyssa to be mathematically active—i.e., to access her mathematical ways of thinking in the context
of the problem, and thereby to participate mathematically. In contrast, in math class Alyssa often
followed along with the responses of group mates and did not seem mathematically active. In other
words, she often did not seem to access her mathematical ways of thinking.

Interestingly, like Kianna, Alyssa appeared to find the interview pleasing in that in the school
days that followed she asked the second author why her math class couldn’t be like the interview
because what they were doing in math class did not make sense to her, implying that the interview
was sensible and even enjoyable. So, in the interaction during the interview, Alyssa appeared to
experience herself as capable of doing mathematics in a way that she did not regularly experience in
mathematics classrooms. Her comments and demeanor further support the claim that in the interview
she had access to mathematical activity in a way that was pleasing and unusual for her.

If the second author had had more time with Alyssa on the swim-a-thon problem (e.g., if the
problem were a classroom task), she would have continued to work with numerical examples for the
amount of money earned in swimming 4 laps with different numbers of sponsors to learn whether
Alyssa could abstract a pattern from her activity that she could represent algebraically. Exploring
these possibilities with Alyssa would have promoted Alyssa’s achievement in the sense of learning.
If Alyssa’s classroom tasks were designed similarly to this task, how would her access to
mathematical activity and her mathematical achievement, or learning, change? We can’t say for sure,
of course. However, students who tend to feel like mathematics makes sense and who feel that their
ideas are valued are certainly more likely to participate regularly and actively, in comparison with
students who generally feel that they don’t understand in mathematics classrooms, which was the
case for Alyssa. Being active mathematically is certainly necessary for learning and achievement
more generally, although it does not guarantee any particular learning or achievement.
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Concluding Remarks

We have aimed to show how Steffe’s research programs address three aspects of equity:
positionality and power relations in student-teacher relationships, what counts as mathematics, and
access and achievement. In doing so, we have seen how intertwined these three aspects are—it is
hard to draw a boundary between them, because each mutually influences the other. For example, by
positioning students as the generators of mathematical knowledge, Steffe expands what counts as
mathematical knowledge: Students’ mathematics counts as mathematics, or rather, the mathematics
of students, since that is what he creates based on his interactions with students. Steffe advocates that
this mathematics become the basis for curricular design, which has implications for access in the
sense of how mathematically active a student might be in their classroom interactions with a teacher,
and achievement in the sense that this helps to re-define what success might look like in mathematics
classrooms.

We do note that, throughout his work, Steffe focuses on cognitive diversity. Over the course of
his career he has worked with students from diverse backgrounds including different racial, cultural,
ethnic, gender, and socio-economic backgrounds. Thus the participants in his studies have been
diverse in these ways, but this has not been the focus of his analyses. We see this observation as an
opportunity for researchers working within this tradition to continue to expand their analytic lens. We
see at least three promising possibilities for such an expansion: a) explicit analyses of student-teacher
interactions that account for how race, culture, ethnicity, gender, or socio-economic status impact the
mathematics that a teacher-researcher is able to bring forth in interactions with students; b) design or
teaching experiments that embed the goal of making second order models of students mathematics in
situations that address a substantial social issue; and c) explicit attempts, based on second order
models of students’ mathematics, to influence policy discussions.

To examine what letter b might look like, we highlight one of our current graduate students who
has used Steffe’s framework as a basis for selecting students into a design experiment in which he
created mathematical problems that opened the way for students to consider racial bias in jury
selection (Gatza, in press). Gatza is working to unpack how, for example, different students’
understanding of randomness or a limiting process (including differences based on level of units
coordination) impact how they reason about issues of racial bias, and in turn how their understanding
of issues of racial bias impact their understanding of randomness or a limiting process (in ways that
may not strictly be accounted for based on differences in units coordination). We see unpacking these
complex relationships as one avenue for researchers working in this tradition to deepen their
commitments to issues of equity.

Endnotes

" Steffe (2017) might say that this statement is true for all students because standards and
curricular materials under-challenge students who have interiorized three levels of units.

i In the data excerpts, T stands for teacher/researcher, H for Hal, K for Kianna, and W for
witness-researcher. Comments enclosed in brackets describe students’ nonverbal action or interaction
from the teacher/researcher’s perspective. Ellipses (...) indicate a sentence or idea that seems to trail
off. Four periods (....) denote omitted dialogue.
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This paper provides a historical overview of the role and impact of elementary mathematics
specialists as well as current implications and opportunities for the field. Furthermore, suggestions
are offered for the mathematics education field for ensuring the intersection of practice and
research.

Keywords: Teacher Education-Inservice/Professional Development, Teacher Knowledge,
Elementary School Education

Historical Background

Over the years, many groups and leaders have seen the need for supporting teachers of
elementary mathematics. In 1981, the National Council of Teachers of Mathematics (NCTM) Board
of Directors recommended that state certification agencies offer teaching credentials for elementary
school teachers that included mathematics specialist endorsements. The intent of this
recommendation was to prepare elementary teachers to assume the primary responsibility of teaching
mathematics, typically in the intermediate grades. At that time, certification boards across the
country did not positively respond to this suggestion by creating mathematics specialist
endorsements (Dossey, 1984). Since that time, a number of recommendations for the use of
elementary mathematics specialists (EMSs) have emerged (see Figure 1).

Year Recommendation

1981 The National Council of Teachers of Mathematics (NCTM) Board of
Directors recommends that state certification agencies offer teaching
credentials for elementary school teachers that include mathematics
specialist endorsements.

1983 | The National Science Board Commission on Precollege Education in
Mathematics, Science and Technology recommends mathematics
specialists in grades 4-6 in Educating Americans for the 21°' Century.
1984 | An article in The Arithmetic Teacher by John Dossey, entitled Elementary
School Mathematics Specialists: Where Are They? discusses the
importance of mathematics specialists in the elementary school.

1989 | The National Research Council in Everybody Counts recommends that
states alter certification requirements to encourage the use of mathematics
specialists in elementary schools.

2000 | The Principles and Standards for School Mathematics (NCTM) discusses
the importance for mathematics teacher-leaders and specialists especially
in grades 3-5.

2001 | The National Research Council in Adding It Up recommends that
mathematics specialists should be available in every elementary school.
2001 The Mathematical Education of Teachers (CBMS) calls for mathematics
specialists starting at the fifth grade.
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2003

Johnny Lott’s Presidential Message entitled The Time Has Come for Pre-
K-5 Mathematics Specialists advocates for mathematics specialists at the
elementary level.

2003

An article in Teaching Children Mathematics by Reys and Fennel, entitled
Who Should Lead Mathematics Instruction at the Elementary Level? A
Case for Mathematics Specialists makes the case for mathematics
specialists using both models.

2003

NCTM and the National Council for Accreditation of Teacher Education
(NCATE) release standards for Elementary Mathematics Specialists
programs.

2006

Francis (Skip) Fennell’s Presidential Message entitled We Need
Elementary Mathematics Specialists NOW outlines the need for
mathematics specialists/leaders.

2008

The National Mathematics Advisory Panel (NMAP) releases their report
in which they call for research to be conducted on the use of mathematics
specialists in elementary schools.

2009

NCTM Research Brief describes 9 research studies focused on
mathematics specialists and coaches and calls for additional research.

2010

Association of Mathematics Teachers Educators (AMTE) releases
Standards for Elementary Mathematics Specialists which outlines program
standards for teacher credentialing and degree programs. Revised in 2013.

2010

AMTE, Association of State Supervisors of Mathematics (ASSM),
National Council of Supervisors of Mathematics (NCSM), NCTM joint
position statement recommends that every elementary school should have
access to an EMS.

2012

Conference Board of Mathematical Sciences (CBMS) The Mathematical
Education of Teachers 1l outlines the increased use of EMSs.

2012

NCTM/CAEP Standards for Elementary Mathematics Specialists
(Advanced Preparation) are released.

2013

Linda Gojak’s Presidential Message entitled, It’s Elementary: Rethinking
the Role of the Elementary Classroom Teacher, advocates for mathematics
coaches and specialists at the elementary level.

2015

Updated NCTM Research Brief describes 24 research studies focused on
mathematics coaches and calls for additional research.

2017

AMTE releases the 2™ book in their Professional Development Series,
Elementary Mathematics Specialists: Developing, Refining, and
Examining Programs that Support Mathematics Teaching and Learning

69

Figure 1. Recommendations for Mathematics Specialists and Coaches. Adapted from Fennell, F. S.
(2017). We need elementary mathematics specialists now: A historical perspective and next steps. In
M. B. McGatha & N. R. Rigelman, (Eds.). Elementary mathematics specialists: Developing, refining,

and examining programs that support mathematics teaching and learning. Charlotte, NC:
Information Age Publishing. Reprinted with permission. Copyright IAP. All rights reserved.

Although these recommendations use the term mathematics specialist, they describe models that
include working with students, teachers, or both. Some of the recommendations distinguish between
the models by using different titles and others do not. In fact, the title of these teacher leaders varies

from state to state and even from district to district. In an effort to provide some clarity on these
titles, my colleague and I (McGatha & Rigelman, 2017) offered a general overview of the work in
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which these teacher leaders engage and suggested some common language that could be used in
referring to these positions (see Figure 2).

Figure 2. Mathematics Specialists’ Titles. Source: McGatha, M. B. & Rigelman, N. R. (2017).
Introduction. In M. B. McGatha & N. R. Rigelman (Eds.). Elementary mathematics specialists:
Developing, refining, and examining programs that support mathematics teaching and learning.
Charlotte, NC: Information Age Publishing. Reprinted with permission. Copyright IAP. All rights
reserved.

The titles under EMS and Secondary Mathematics Specialist (SMS) describe the major roles in
which these teacher leaders engage: (a) mathematics teacher, a professional who teaches mathematics
to students; (b) mathematics intervention specialist, a professional who works with students in “pull
out” or “push in” intervention programs; and (c) mathematics coach, a professional who works
primarily with teachers (McGatha & Rigelman, 2017).

Regardless of the title used to describe these teacher leaders as indicated in Figures 1 and 2, the
mathematics education community has recognized a need for mathematics specialists at the
elementary level for over 35 years. These recommendations stimulated several initiatives in schools
and districts across the country.

Practice: What is Happening in the Field?

In 1988, ExxonMobil launched the K-5 Mathematics Specialist Program in which grants were
given to 120 districts across the country to train and place mathematics specialists in elementary
schools. However, the model in this program was actually the mathematics coach model since
teachers were trained to be “proactive resources for other teachers, administrators, and parents”
(ExxonMobile, n.d.). This corporate-based program was one of the first large-scale mathematics
coaching initiatives in the United States. The state of Virginia took advantage of the ExxonMobile
grants and became an early leader in supporting the work of EMSs. Various stakeholders and
organizations in that state began work as early as 1992 and that work still continues today
(http://www.vacms.org). More recently, the Elementary Mathematics Specialists & Teacher Leaders
project (emsé&tl), supported by the Brookhill Institute of Mathematics, was created in 2009 to support
a core group of EMSs in Maryland. The project studies the impact of mathematics specialists and
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also hosts a nationally recognized clearinghouse (www.mathspecialists.org). Other large scale
projects (e.g., Mathematics Coaching Project, Examining Mathematics Coaching Project) have, and
continue to, support EMSs. This is in addition to the many district-based programs that exist across
the US.

Another important aspect of work in the field, focuses on the ongoing support of the three
national mathematics education professional organizations (AMTE, NCSM, NCTM). Arbaugh,
Mills, and Briars (2017) outlined this important work and presented a representative list of activities
from each organization (see Figure 3).

With the increased attention on EMSs and projects to support their work, AMTE felt it was
important to address credentialing and degree programs for these mathematics professionals. In 2010,
AMTE released Standards for Elementary Mathematics Specialists: A Reference for Teacher
Credentialing and Degree Programs. When the standards were published, there were only nine states
that had a credential for EMSs while nearly every state has a credential for reading specialists.
Currently, 20 states have some sort of credential for EMSs. While this growth is impressive in just
seven years, we need every state to support the credentialing of EMSs.

Unfortunately, the number of schools or districts that have implemented mathematics coaching or
specialist programs is unknown because a comprehensive national survey of such programs does not
exist (National Mathematics Advisory Panel, 2008). However, the number of large-scale projects and
the work of professional organizations as described above clearly indicate a growing focus on EMSs.
Since 2000 the number of sessions on mathematics coaching and specialists at the annual
conferences for AMTE, NCSM, and NCTM has steadily increased. In addition, other anecdotal
evidence provides insights into the growing popularity of mathematics coaches and specialists. For
example, a search on the Internet for “mathematics coach” produced 21,900 hits in 2008 and
26,600,000 in 2017 and “mathematics specialist” produced 17,000 hits in 2008 and 615,000 in 2017.
While the exact number of schools and districts using mathematics specialists or coaches is
unknown, it is clear that these programs have become a preferred professional development strategy
to improve the teaching and learning of mathematics. It is critically important that we research what
is happening in the field to verify the impact of EMSs.

Research: What is Happening in the Field?

When the first NCTM research brief on mathematics specialists was published in 2009, there
were only nine studies included in the report. Research in this area quickly gained prominence and
there were 24 research studies included in the 2015 research brief. And, the research continues. The
research included in this brief overview (2002-2017) has either been published in an educational
journal, edited book, or presented at a research conference so it has undergone some sort of peer-
review process. Additional research has been conducted and can be found in evaluation reports,
program review documents, and dissertations.

AMTE NCSM NCTM

AMTE.net MathEdLeadership.org NCTM.org
Peer * Mathematics Teacher ~ * NCSM Journal of * Mathematics Teacher
Reviewed Educator (MTE) (with Mathematical Educator (MTE) (with
Journals NCTM) Leadership AMTE)

* Teaching Children
Mathematics (TCM)

* Coaches Corner

* Reflect and Discuss

* Journal for Research
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Facilitated
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Annual Meeting
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Certification
Conferences
EMS Research
Conference
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Elementary
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AMTE Professional
Book Series

Jump Start -Formative
Assessment (W/NCSM)
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Contemporary Issues
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on teaching/learning
topics

* NCSM Newsletter and

Online classroom
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Research Briefs
summarize research
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teaching and learning
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mathematics education
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Evaluation Toolkit
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Grants Education Trust
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* EMS Scholarship
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Figure 3. Representative AMTE, NCSM, & NCTM Support for Elementary Mathematics
Specialists. Source: Arbaugh, F., Mills, V. L., Briars, D. J. (2017). The role of professional
organizations: Advocacy, development and research. In M. McGatha & N. Rigelman (Eds.).
Elementary mathematics specialists: Developing, refining, and examining programs that support
mathematics teaching and learning. Charlotte, NC: Information Age Publishing. Reprinted with
permission. Copyright IAP. All rights reserved.

Specialists as Mathematics Teachers

There are currently very few studies on EMSs working as MTs. McGrath and Rust (2002)
studied the effectiveness of departmentalized mathematics at the elementary level. The study
compared gain scores in achievement test data from students in self-contained classrooms and
departmentalized classrooms in grades 5 and 6. For the mathematics subtest of the achievement data,
there were no significant differences in student achievement data gain scores between
departmentalized and self-contained classes. However, Gerretson, Bosnick, and Schofield (2008)
found that using MTs at the elementary school level allowed teachers more time to effectively plan
lessons and focus their professional development (PD). In addition, teachers in this study reported
gains in student achievement as a result of using MTs. Nickerson (2010) also noted that achievement
gains were greater in treatment schools with MTs as compared to control schools without MTs. The
MTs in this study noted significant changes to students’ persistence in solving mathematics tasks and
increased interest in mathematics. Nickerson noted changes in MTs’ instructional practice towards an
inquiry-based approach, but pointed out that this took time.

More recently, Markworth (2017), examined the various content specialization models of MTs
involved in team teaching within seven school districts. Similar to the Gerretson, Bosnick, and
Schofield study (2008), the MTs acknowledged affordances to the content specialization models such
as having more time to focus on fewer content areas, which allowed for more in-depth study and
focused PD. The MTs believed this supported them in providing higher quality instruction. MTs also
pointed out that sharing the responsibility for teaching was beneficial to students. Constraints to the
model are also described including (a) scheduling issues not present when teaching in a self-
contained class and (b) isolation can occur if there is only one content area teacher per grade level.
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Specialists as Mathematics Coaches

The majority of the research on EMSs focuses on MCs. These studies answer three main
questions: (a¢) How do coaches interact with teachers? (») What knowledge do coaches need? and (c¢)
What is the impact of mathematics coaching?

How Do Coaches Interact with Teachers? The answer to this question varies greatly because
districts and schools are still trying to figure this out. Several studies have focused on this question in
order to support schools in understanding the most beneficial coaching practices. The research
focuses on coaching practice in one-on-one settings (one coach and one teacher) and group settings
(one coach and multiple teachers).

Studies that reported on coaching in one-on-one settings, in general, have identified similar ways
of interacting with teachers that fell along a continuum from more-directive to less-directive. While
each study used different language to describe the ways of interacting, they all focused on similar
ideas. On the more-directive end of the continuum, the coach shared knowledge by (a) modeling
lessons, (b) telling teachers what to do, or (c¢) providing resources for teachers (Becker, 2001; Chavl
et al. 2010; Polly, 2012). Toward the middle of the continuum, coaching interactions focused on
collaborative activities such as co-teaching, co-planning, and providing support during teaching
(Becker, 2001; Chavl et al. 2010; Gibbons & Cobb, 2017; McGatha, 2008; Polly, 2012; Race, Ho, &
Bower, 2002). At the less-directive end of the continuum, the coach supported teachers in becoming
reflective practitioners. Activities on this end of the continuum included collecting data from
observed lessons, providing feedback, and engaging teachers in thoughtful reflections (Becker, 2001;
Bruce & Ross, 2008; Chavl et al., 2010; Gibbons & Cobb, 2017; Harrison, Higgins, Zollinger,
Brosnan, & Erchick, 2011; McGatha, 2008; Olson & Barrett, 2004; Olson, 2005; Polly, 2012; Race,
Ho, & Bower, 2002). While all of these coaching interactions serve useful purposes, activities on the
less-directive end of the continuum seem to be more powerful in supporting teachers in changing
their instructional practice.

A second aspect of coaching practice is coaching in group settings, such as a coach working with
grade-level teams or professional learning communities. Gibbons and Cobb (2017) identified
potential group coaching practices from the research on professional development and teacher
learning that included (@) doing mathematics, (b) analyzing student work, (c¢) analyzing classroom
video, and (d) rehearsing high-leverage practices. They point out that these practices can serve as a
beginning framework, but additional research is needed to understand the usefulness of these
practices in group settings. Baker, Bailey, Larsen and Galanti (2017) used the potential coaching
activities identified by Gibbons and Cobb (2017) as a framework to identify high-leverage coaching
practices across other coaching studies. Baker et al. (2017) suggested that even though the practices
were not identified in many of the coaching studies, it did not invalidate the list. They agreed with
Gibbons and Cobb (2017) that more research is needed in this area.

A few studies have focused on group coaching situations. In these settings, it is important to have
regularly scheduled meetings in order to build continuity and maintain momentum (Gibbons,
Garrison, & Cobb, 2011). In addition, it is critical to focus group meetings on issues of practice such
as student learning and best teaching practices. (Alloway & Jilk, 2010; Obara & Sloan, 2009;
Gibbons, Garrison, & Cobb, 2011). Beyond regularly scheduled meetings, Gibbons (2017) reported
on the use of math labs (similar to lesson study) as a coaching structure to support the collective
learning of a group of teachers.

What Knowledge Do Coaches Need? The Standards for Elementary Mathematics Specialists
(AMTE, 2010, 2013) offer detailed descriptions of three broad areas of knowledge necessary for
mathematics coaches and specialists: (a) content knowledge for teaching mathematics, (b)
pedagogical content knowledge for teaching mathematics, and (c) leadership knowledge and skills
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(p. 4). Researchers generally agree that these three areas of knowledge are important. However, the
research focuses more explicitly on the third category of leadership knowledge and skills.

Sutton, Burroughs, and Yopp (2011) outlined eight domains of mathematics coaching
knowledge: “Assessment, Communication, Leadership, Relationships, Student Learning, Teacher
Development, Teacher Learning, and Teacher Practice” (p. 16). At first glance, many of these
domains seem aligned with the AMTE categories; however, the detailed descriptions reveal more
focused attention on supporting teacher learning, which falls into the AMTE category of leadership
knowledge and skills. Several research studies help to further define specific ways coaches can
support teachers. For example, it is important for coaches to understand trajectories of teachers’
development so they can offer differentiated experiences for teachers (Baldinger, 2014; Gibbons &
Cobb, 2016; Sutton, Burroughs & Yopp, 2011) and create long-term goals for teachers’ development
(Gibbons & Cobb, 2016). Coaches should have a deep knowledge of instructional practice and theory
so they can support teachers in (a) assessing their own practice (Gibbons & Cobb, 2016) and (b)
making connections between theory and practice (Alloway & Jilk, 2010; Sutton, Burroughs, & Yopp,
2011). Campbell and Malkus (2013) reiterated the importance of adequate preparation for coaches to
make sure they possess the knowledge necessary to be effective coaches.

What Is the Impact of Mathematics Coaching? Two major areas are discussed in the research
concerning the impact of mathematics coaching: improving teacher instructional practice and
improving student achievement. Teacher instructional practice is defined broadly to focus on best
practices in teaching as described in NCTM documents (1991, 2007). Of course, each study reports
on particular aspects of teacher instructional practice.

Across all the instructional practice studies, researchers saw improvements (in varying degrees)
in teacher instructional practice including increases in teacher questioning (Polly, 2012; Race, Ho, &
Bower, 2002); student engagement (Balfanz, Maclver, & Byrnes, 2006; Race, Ho, & Bower, 2002);
and teaching for understanding (Becker & Pence, 2003; Bruce & Ross, 2008; Burroughs, E., Yopp,
D., Sutton, J., & Greenwood, M, 2017; Neuberger, 2012). Increases were also noted in particular
instructional formats such as cooperative learning (Balfanz, Maclver, & Byrnes, 2006; Becker &
Pence, 2003); classroom discourse (Balfanz, Maclver, & Byrnes, 2006; Neuberger, 2012; Race, Ho,
& Bower, 2002); and technology (Becker & Pence, 2003). Two studies in this category differed from
the others in that their findings did not fall into the categories described above but were more focused
on specific instructional practices. Rudd, Lambert, Satterwhite, and Smith (2009) focused on one
particular instructional practice, teacher’s use of math-mediated language in their lessons. After the
professional development and coaching sessions, researchers saw an increase in teacher’s use of
math-mediated language. Krupa and Confrey (2010) noted increases in (a) effective use of class
time, () accurate delivery of content, and (¢) frequent use of formative assessment as a result of
teachers working with coaches.

Seven studies looked at the impact of mathematics coaching on student achievement. In varying
degrees and with a variety of methods, all the studies reported increases in student achievement. At
the elementary and middle school levels, studies show that coaching positively impacted student
achievement on state-level assessments during the first and second years of a coaching program
(Conaim, 2010; Zolligner, Brosnan, Erchick, & Bao, 2010). Additional studies at the elementary and
middle school levels focused on student achievement impact after four years of a coaching program
and showed even stronger results (Balfanz, Maclver, & Byrnes, 2006; Brosnan & Erchick, 2010;
Campbell, Griffin, & Malkus, 2017; Campbell & Malkus, 2011). Findings from these longer studies
indicate that, in order to significantly impact student achievement, coaches needed both experience
and sufficient time to interact with teachers. There is only one study conducted at the high school
level (Alloway & Jilk, 2010) and it was not specifically designed to study student achievement;
however, its authors noted that pass rates in algebra and geometry classes increased from 40% to
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70% after the implementation of coaching. As we move forward in the field, it is imperative to
ensure the intersection of practice and research.

Ensuring the Intersection of Practice and Research

Probably the most important way to ensure the intersection of EMS practice and research is to
collaborate, collaborate, collaborate! We must emphasize the importance of ongoing research to
identify best practices in the field that are making a difference in teacher practice and student
achievement. We really can’t describe research-based practices in the field quite yet. We need more
research!

I propose four suggestions to support the field in ensuring the intersection of EMS practice and
research:

1. Identify districts using EMSs. As noted above, the number of districts using EMSs is
unknown because a comprehensive national survey of such programs does not exist. Such a
survey needs to happen! Once we know where programs exist, we can encourage districts to
share their successes and challenges to support other EMSs through conference presentations
and articles in practitioner journals. In addition, we can support districts in conducting
research on their EMS programs to inform the field.

2. Provide adequate preparation and ongoing support for EMSs. As noted throughout this
paper, there are many initiatives focused on supporting EMSs in the field. These efforts need
to continue and new initiatives need to emerge. There is an abundance of anecdotal evidence
of districts utilizing EMSs without providing them any professional development or ongoing
support. Research has shown that adequate preparation and ongoing professional
development can positively impact student achievement (Campbell & Malkus, 2013).

3. Increase the number of states with EMS certifications/endorsements. As noted previously,
there are currently only 20 states that offer an EMS certification/endorsement. As the number
of states offering an EMS credential increases, we will see more EMSs in the field supporting
the teaching and learning of mathematics. Receiving a credential should require some level of
preparation which aligns with suggestion #2. And, of course, more well-prepared EMSs in
the field will increase the research possibilities.

4. Establish working groups focused on EMS research. There are relatively few researchers
focused on EMSs. They need opportunities to collaborate with other like-minded researchers
to reflect on their practice and explore future research opportunities. A few such groups have
emerged but we need more attention on focusing the EMS research agenda. Relatedly, two
EMS research conferences have occurred recently (AMTE in 2015 and the Virginia
Mathematics Specialist Initiative in 2016). Such conferences are another opportunity for
researchers to share their work and form collaborations. Because the audience is relatively
small, these conferences are not that expensive and funding is available to support these
efforts. The research that emerges from these collaborations will provide insights for EMSs
in the field.

It is exciting to be involved in an area of practice and research that is still emerging and growing!
We have opportunities to influence the field in multiple ways. We also still have many challenges
facing us. As we continue to find ways to ensure the intersection of practice and research, we will
move the field forward in positive ways.
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Endnotes
" Parts of this manuscript are adapted from The Impact of Mathematics Coaching on Students and
Teachers published by NCTM (2015), http://www.nctm.org/Research-and-Advocacy/Research-
Brief-and-Clips/Impact-of-Mathematics-Coaching-on-Teachers-and-Students/.
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A FRAMEWORK TO GUIDE THE DEVELOPMENT OF A
TEACHING MATHEMATICS WITH TECHNOLOGY
MASSIVE OPEN ONLINE COURSE FOR EDUCATORS (MOOC-ED)
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Mathematics teacher educators face a challenge of preparing teachers to use technology that is
rapidly changing and easily available. Teachers have access to thousands of digital tools to use with
students and need guidance about how to critically choose and use tools to support students’
mathematics learning. Research provides guidance to teachers about what features to look for in a
technology tool and suggestions are offered about how mathematics teacher educators and
researchers can support teachers in using technology to teach mathematics.

Keywords: Technology, Teacher Education-Preservice, Teacher Education-Inservice/Professional
Development

Introduction

Technology is an essential component of today’s workplace and a ubiquitous part of our society.
82% of high school students and 68% of middle school students have access to smart phones. 75% of
these students would like to use their devices to support learning (Speak Up, 2014). Students report
that using technology better engages them in learning. Parents state that the use of technology will
better prepare their children for the workforce of tomorrow. While researchers have evidence to show
the positive impacts the use of technology can have in classrooms, and while there are increasing
numbers of freely accessible digital tools available to use, teachers’ incorporation of technology has
been slow.

We know technology, like any tool, must be selected and used carefully. Mathematics teachers
have access to more open-access digital resources than ever before. While ten or twenty years ago,
teachers were creators of activities, today, teachers search, find, select, and often modify activities
they find using Google, Pinterest, or the Blogosphere. In addition, many teachers have access to
digital resources that accompany their curricula. With so many activities easily available, many
teachers have become curators rather than creators of digital resources. As teachers gather materials
together to present to students, they need guidance to assure that what they have selected will meet
the needs of their students and will achieve their learning goals. Teacher educators face a tremendous
challenge in preparing teachers to use digital technology that is rapidly changing to support students’
mathematics learning. For example, the resources available today may be different tomorrow.
Research can provide guidance and advice to assist teachers in using technology in the mathematics
classroom.

In this paper, a framework developed to guide the design of a Teaching Mathematics with
Technology massive open online course for educators (MOOC-Ed) will be shared along with
questions that teachers can consider when making decisions about using technology to teach
mathematics.

Guiding Framework

The Didactic Triangle.

A framework was created to guide the development of a MOOC to support teachers in using
technology to teach mathematics. The foundation of this framework is the didactic triangle. The
didactic triangle is a representation that has been used by several researchers (e.g., Brousseau, 1997;
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Freudenthal, 1991; Steinbring, 2005) to describe interactions that occur among a teacher, his or her
students, and the content that is being taught. These interactions can be described in terms of
pedagogical activities the teacher uses to engage students in learning content — in this case,
mathematics. It is important to note that mathematics refers to mathematical topics like algebra,
geometry, measurement, statistics, probability, and number, and also the mathematical processes
students use when engaging with mathematics. These mathematical processes and practices include
using representations, making connections, communicating reasoning, creating and critiquing
arguments, attending to precision, solving problems, and mathematical modeling (NCTM, 2000,
2014; National Governors Association Center for Best Practices, Council of Chief State School
Officers, 2010)

Within the didactic triangle many interactions take place. For the purpose of designing our
MOOC, we focus on those interactions that are planned and used by the teacher. These include (but
are not limited to) pedagogical activities related to 1) the selection and implementation of
mathematical tasks, 2) questions teachers pose to push student thinking or probe their understanding,
3) the facilitation of mathematical discussions, and 4) assessment of student learning. We depict
these four pedagogical activities at the center of our didactic triangle (See Figure 1).

Figure 1. A sample of activities that take place among students, teachers, and mathematics.

Although not explicitly mentioned, we acknowledge that there are many factors that influence
classroom interactions such as classroom culture, norms, attitudes, and beliefs. These all influence
the enactment of the pedagogical activities we have placed at the center of the triangle. We depict the
addition of technology to the classroom by adding a vertex to expand the didactic triangle and create
the didactic tetrahedron.

The Didactic Tetrahedron

To make explicit how one considers the role of technology among interactions with students, a
teacher, and mathematics, the didactic triangle was extended by Tall (1986), and more recently by
Olive et al. (2010) and Ruthven (2012). We can depict this influence by expanding our didactic
triangle to create a didactic tetrahedron with technology as the fourth vertex (See Figure 2). Olive et
al. state "the introduction of technology into the didactic situation could have a transforming effect
on the didactical situation that is better represented by a didactic tetrahedron, the four vertices
indicating interactions among Teacher, Student and Mathematical Knowledge, mediated by
Technology" (p. 168).

It is important to define what we mean by technology. For some, technology is any object or tool
that allows a user to accomplish a task. Others restrict the use of the term technology to refer to
electronic or digital technology. Some researchers make distinctions between artifacts, tools, and
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instruments. According to Monaghan “an artefact is a material object, usually something that is made
by humans for a specific purpose, e.g. a pencil. An artefact becomes a tool when it is used by an
agent, usually a person, to do something” (Monaghan, Trouche, & Borwein, 2016, p.6). On the other
hand, Trouche discusses the process that is involved in an artefact becoming an instrument. He states,
“when an artefact has been appropriated by a user, I will name instrument the mixed entity composed
of the artefact and the associated knowledge... a tool is a thing somewhere on the way from artefact
to instrument” (ibid, p.8). In this paper technology will be used synonymously with tools as defined
by Monaghan.

Figure 2. The didactic tetrahedron which includes technology.

When adding technology to mathematical pedagogical activities it is important for teachers to
think about how the use of technology influences representations of mathematics and how the use of
technology influences pedagogy.

The Influence of Technology on Representations of Mathematics

Mathematics is abstract and it is only through its representations to which we have access to it.
Technology offers new and different representations for students and teachers to interact with and
use. For teachers, we emphasize that when evaluating technology there are three important factors to
consider (See Figure 3). In particular, it is important to determine if the representations technology
offers, determine whether it has mathematical fidelity, and consider if technology will be used with
students as an amplifier or as a reorganizer (Pea, 1985, 1987).

Figure 3. Three factors for teachers to consider when evaluating technology.
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Mathematical Fidelity. When choosing technology to use in the classroom, teachers need to
make sure that what is represented in the tools are accurate representations of the mathematics. Dick
refers to this as, “mathematical fidelity” (Zbiek, Heid, Blume, & Dick, 2007). To illustrate, consider
the sketch shown below that was created to show how to compute the slope of a line.

Figure 4. An example of a technology-based activity without fidelity.

Notice that the length of segment BC and segment AC are used to calculate the ratio of the “rise”
to the “run.” Segment lengths are always positive and this becomes problematic when the line has
negative slope. In this case, the technology calculated the ratio, but cannot account for the negative
slope — thus, the calculated ratio is not mathematically correct. The sketch is not faithful to the
mathematics and thus lacks mathematical fidelity. It is important for teachers to select tools to use
with students that have mathematical fidelity. In addition, teachers should also consider how students
will interact with the technology.

Amplifier/Reorganizer. Pea (1985, 1987) used the metaphors of amplifier and reorganizer to
describe how technology might be used. As an amplifier, technology performs many of the same
actions that could be completed by hand, just more precisely, quickly, and efficiently. The question
that is answered using by-hand methods or using technology is relatively unchanged. For example,
students might be asked to create a table of values for the function with rule f{x) = 3x+5. This could
be produced by hand or by using a spreadsheet. The results would be generated more quickly and
accurately with the spreadsheet. As a reorganizer, technology changes the way students think about a
question or mathematical idea. For example, a student may be provided with the graph of the
function with rule f{x) = 3x+5 that is linked with a table of values and sliders that dynamically change
the values of the slope and y-intercept parameters. By allowing the technology to quickly produce the
graph and table, questions can be posed to shift a student’s focus from producing the representations
to conjecturing and reasoning about how changes in the parameters are related to changes in the
graph and table.

When technology is used as a reorganizer, questions can be posed that align with and take
advantage of the representations and actions afforded by the tools. Many technology tools that
support mathematics learning provide multiple representations of mathematical objects (e.g.,
numeric, graphic, symbolic, pictorial) and allow the user to interact with the technology to
dynamically adjust one representation and see the changes in other representations. This dynamic
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linking can influence how students reason with and make connections among different
representations of mathematics (Kaput, 1987).

Representations. The use of multiple representations to support students’ mathematical thinking
has long been recognized as an important pedagogical activity (e.g., Kaput, 1992; NCTM 2000,
2014). Research suggests that the use of multiple representations can assist students in developing
deeper understandings of mathematics and become more flexible problem solvers (Ainsworth, 1999).
NCTM (2014) claims, “Effective teaching of mathematics engages students in making connections
among mathematical representations to deepen understanding of mathematics concepts and
procedures and as tools for problem solving” (p. 24). When one thinks about representations of
mathematics, symbols, graphs, and tables often come to mind. Mathematical representations can also
include pictures, diagrams, contexts, verbal descriptions, and physical objects. There are many ways
to represent mathematical ideas.

Technology tools provide students with easy access to representations and these technology-
based representations are often linked. That is, a change in one representation results in a change in
other representations. For example, changing the function rule f{x)=2x+1 to f{x)=3x+1 can result in a
corresponding change in its graph. From these interactions, students can better understand
slope. However, it is important that the production of multiple representations is not the sole focus of
an activity. Rather, multiple representations can be the centerpiece of productive mathematics
discussions and making connections within and among different representations an important
cognitive activity (NCTM, 2014).

With these important features of technology described, we created questions that teachers might
consider when selecting tools to use in the mathematics classroom that are shown in Figure 5.

Technology- Mathematical Fidelity. Is the technology tool a faithful and true representation of
Mathematics the mathematics students are to learn? (Dick, 2008)

Amplifier/Reorganizer. Does the technology allow the teacher and/or student to do
the same work more effectively, efficiently, and quickly (amplifier)? Does the
technology change the way the student and/or teacher thinks about mathematical
ideas (reorganizer)? (Pea, 1985)

Representations. How does the technology represent the mathematics? Does it
provide linked representations for students to use? (Goldin & Kaput, 1996)

Figure 5. Questions teachers may consider when evaluating interactions between mathematics and
technology.

The Influence of Technology on Pedagogy

Just as technology can influence the mathematical representations students interact with, it can
also impact pedagogy. It is important for the teacher to be aware of the opportunities technology
allows and consider how it influences the four pedagogical activities involved in 1) designing tasks,
2) posing questions, 3) facilitating discourse, and 4) assessing student learning.

Researchers have described tasks in terms of their cognitive demand (Henningsen & Stein, 1997)
and mathematical richness. Technology can have an influence on both the richness of a task and its
cognitive demand. A mathematically-rich task in a paper-and-pencil environment may be a
completely different activity when students have access to technology tools. Consider the task of
constructing an equilateral triangle. Doing so on paper with compass and straight-edge requires
different thinking than doing so with a dynamic geometry program. Similarly solving a question such
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as the following requires different thinking if solved using paper and pencil or solved using a
dynamic geometry program.

Figure 6. A technology inactive question from
https://parcc.pearson.com/resources/Practice-Tests/TBAD/Geo/PC1105806 _GeoTB_ PT.pdf

If the question is answered using paper and pencil, a student may plot f{x)=8x+5. They may then
plot the point (0,3). They may determine the distance between (0,5) and (0,3) to be two and then
multiply this distance by three to determine that (0,9) is the image of (0,5) under the dilation. This
may be repeated for another point to find line » or a student may recall that the slope is invariant
under dilation. Using a dynamic geometry program, students need to enact technological procedures,
plotting a line, plotting a point, and performing dilation. The thinking needed is different given the
different tools students have available for them to use. Thus, when teachers have access to
technology, they need to think carefully about the tasks and questions they will pose and the thinking
required of students when technology is used. Dick and Hollebrands (2011) stress the importance of
questions in the context of technology by stating: “The value of technology to the teacher lies not so
much in the answers technology provides but rather in the questions it affords. Indeed, “what
questions could I ask that I could not ask before?” is the ruler by which we should judge what
technology buys us as teachers of mathematics” (p. xvi).

Technology also allows teachers new tools to use when leading mathematical discussions.
Collaborative tools such as Google Docs, Sheets, or Slides allow multiple students to share and
discuss their work with the whole class. Mathematics specific technology tools like the TI-Navigator
and Desmos allow the teacher to monitor and share student work. Orchestrating discussions using
these types of tools requires teachers to focus on their mathematical goals and consider ways that
they can reach them by selecting and sequencing students’ work to assist them in making connections
(Smith & Stein, 2011).

Finally, assessment in mathematics classrooms can look very different when teachers are using
technology. Game-like assessment tools like Kahoot! Quizlet and Quizzies can be motivating for
students and can provide feedback to teachers about what students know. Diagnostic assessments tied
to learning trajectories can provide teachers with information about what students know or do not
know and make informed decisions about what to do next to advance students’ learning.

We present these as questions a teacher may consider when using technology in the mathematics
classroom (See Figure 7).

In addition to considering how technology can influence mathematics and pedagogy there are
ways in which technology interacts with the teachers and students that we highlight in our MOOC.
These are described in the following sections.
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Technology -Teacher Edge. Technology is used by teachers and students in the classroom in a
variety of ways. Walk into any classroom and you may find teachers using a document camera,
interactive white board, and a laptop equipped with a wide array of software applications. Dick and
Hollebrands (2011) use the constructs of conveyance and mathematical action technology to assist
teachers in making distinctions among the different technology they have available to use in the
classroom.

Type of Technology. Conveyance technologies are used to “transmit and/or receive information”
and are not math specific. These include presentation technology (PowerPoint, document cameras,
interactive boards, projectors), communication technology (social media), collaboration technology
(Google Docs), and assessment technology (clickers, educational games). Even though these
technologies are not mathematics specific they can still have a significant impact on a mathematics
classroom by providing opportunities for students to consider and critique each other’s solutions and
justifications.

Pedagogical Questions to Consider

Activities

Designing Tasks | What is the cognitive demand of this technology-based task? (Stein & Smith,
1998)

How will the student interact with the task and technology?

How does technology enhance student learning?

What learning goals would be best served by this task?

How might I prepare students to engage productively in this task?

Questions What new questions does this technology allow me to ask?

In what ways can I ask questions that will advance student thinking and probe
what students are learning?

What opportunities does the technology allow for students to pose their own
mathematical questions?

How might a structure my classes to help students feel comfortable generating
and posing their own questions and responding to questions that other students
generate?

Discourse Does the technology allow for different solutions and/or different solution
strategies?

What would make a discussion of technology-based tasks productive?

How can I use technology to facilitate a productive mathematics discussion?

Assessment What type of feedback does the technology provide to the student?

How can I build self-assessment into the tasks?

How can I leverage the technology to determine what students are learning?
How can I use the technology to assess what the students have learned?

Figure 7. Questions a teacher can consider when examining the effects of technology on pedagogy.

Mathematical action technologies are tools, software, and applets that can “perform mathematical
tasks and/or respond to the user’s actions in mathematically defined ways” (Dick & Hollebrands,
2011, p. xii). These technologies include: graphing calculators, computer algebra systems, and
dynamic mathematical environments (GeoGebra, the Geometer’s Sketchpad, Fathom, TinkerPlots).
Often these technologies are used to perform computations, graph functions, plot data, and construct
geometric figures. However, mathematical action technologies can also be used to allow students
access to approaches and tasks that would not be possible without technology. Here technology can
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be used to develop students’ mathematical understanding and support students as they explore
patterns. Mathematical action technologies can also offer opportunities for teachers to pose questions
and tasks that could not be asked in non-technological environment (Zbiek, Heid, Blume, & Dick,
2007). For example, in a dynamic geometry environment, a teacher can ask students to explore how a
particular quadrilateral behaves when one of its vertices is dragged. This question is one that cannot
be posed in a paper-pencil environment. Guiding questions a teacher can consider when selecting and
evaluating technology tools are included in Figure 8.

Technology Issues to Consider and Questions to Pose

Consideration

Technology- Conveyance/Mathematical Action Technology. Will the technology be used for
Teacher the teacher to convey information to students (e.g., power point, internet)? Will

the technology be used to allow students to perform mathematical actions? (Dick
& Hollebrands, 2011)

Is the technology readily available for the teacher? Is the learning curve minimal
for the teacher?

Figure 8. Questions a teacher can consider when selecting technology tools.

Technology-Student Edge. When making a decision about whether to use a particular technology
tool, thinking about how students interact with the technology is especially important (See Figure 9).

Figure 9. The edges of the tetrahedron.

Mathematical action technology often include mathematical representations students can directly
manipulate. Direct manipulation allows users to use a mouse or their finger to interact directly with
the representation of the mathematical object. The way that the object moves is continuous. There is
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no lag between the user’s own movement and that of the object in the environment. The way that the
objects respond is determined by mathematical rules. Thus, through direct interactions the student
can observe and infer mathematical properties and theorems. This is one important feature that makes
technology tools different from non-technology tools such as base-10 blocks or a ruler. By
interacting with technology, students can learn mathematical rules and properties. Conveyance
technology tools, on the other hand, typically do not offer mathematics representations and can
sometimes be challenging for students to enter mathematics notation. However, these conveyance
technologies can be designed by the teacher to provide students with feedback that they can use to
gauge their learning and mathematical understanding. Some questions teachers may want to consider
when thinking about students’ interactions with technology are included in Figure 10.

Technology- Interaction. How does the student interact with the technology? Is the technology
Student available? Is the technology learning curve minimal or steep?

Feedback. What types of feedback does the technology provide to students when
they are interacting with it?

Figure 10. Questions teachers can consider related to the ways students interact with technology and
the feedback it provides.

Conclusion

While technology is rapidly changing and evolving, there are general questions teachers can
contemplate when making decisions about whether to select and use a particular technology tool.
Teachers should consider whether the technology they are selecting to use is a conveyance or
mathematical action technology. They should evaluate the types of representations the technology
offers and determine whether those representations are faithful to the mathematics students are
learning. They should also assess whether the technology is used to amplify or reorganize students’
thinking. How technology effects the design of tasks, questions that can be posed, facilitation of
discourse, and assessment of student learning should also be considered. Finally the ways students
can interact with the technology and the feedback it provides to support students’ mathematics
learning should be taken into consideration.
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DIGITAL TECHNOLOGIES IN MATHEMATICS CLASSROOMS:
BARRIERS, LESSONS AND FOCUS ON TEACHERS

Ana Isabel Sacristan
Center for Research and Advanced Studies (CINVESTAV), Mexico
asacrist@cinvestav.mx

In this paper, drawing from data from several experiences and studies in which I have been involved
in Mexico, I reflect on the constraints and inertia of classroom cultures, and the barriers to
successful, meaningful and transformative technology integration in mathematics classroom. I focus
on teachers as key players for this integration, calling for more teacher involvement in both
professional development, and as co-constructors and collaborators in the design of technological
implementations and resources.

Keywords: Technology, Teacher Education-In Service/Professional Development

Classroom Cultures, Teachers and Technologies

Throughout his career, Seymour Papert, a pioneer advocate of digital technologies for changing
learning, criticized the way in which school systems constrain knowledge and learning. At the ICMI
Study 17 study conference in 2006, in the final talk of his life (Papert, 2006), Papert denounced that
educational systems ration every aspect by dividing learning into school grades, “cutting up the
knowledge into the subjects” and ordering it; with schools being dictated by graphocentrism—i.e. by
paper-and-pencil technology—and new technologies being used only to implement what was there
before the newer technologies. He ridiculed that situation by saying: “We’d never have had
airplanes...if we had constrained the new transportation to follow the schedules of the sailboats and
the horse-drawn carriages; but that’s what we are doing in our schools” (Papert, 2006).

Before delving into the issues of the constraints—or what I call the inertia—of educational
systems, let us look at some evidence on how digital technologies and tools (DT) have been used and
are being used in schools, using data from several studies carried out in Mexico over a decade, and
from the research literature.

Uses of Digital Technologies in Classrooms in Mexico and Elsewhere

In a survey carried out in Latin-America in 2006 and reported in Julie et al. (2010), it was found
that the most predominantly-used software in mathematics classrooms were software for word
processing (Word, LaTex, PDF) and presentation (PowerPoint) — not mathematical tools, but
communication ones. Other studies in Mexico at middle-school (Rodriguez-Vidal & Sacristan, 2011)
and high-school levels (Miranda & Sacristan, 2012, 2016) showed similar results, with few teachers
using technology in classrooms, and of those who did, for simply presenting information, projecting
videos, plotting graphs or checking results produced in paper-and-pencil, with very rare use of
technology by students. In those studies, the access to technology in classrooms was scarce.

Despite technology becoming more accessible in some schools, this year (2017), Luc Trouche
and I visited a high-school in Mexico where we again observed a teacher using technology in a
similar way: to simply project static function graphs using GeoGebra, completely omitting any of the
dynamic and experimental possibilities (and main purposes) of such a “Dynamic” Geometry
environments (DGESs). (In Sacristan, 2011, we also reported on a case where the teacher failed to
transmit the dynamic function of a DGE, and students simply used the software for drawing static
figures.) Furthermore, the 2017 teacher did not encourage—in fact, discouraged—students from
using technological tools in the classroom (interestingly, however, a couple of students ignored the
teacher’s recommendations, and did use a tablet to reproduce some of the functions demonstrated by
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the teacher).

Although in more developed countries, technological tools in the classrooms are becoming
increasingly ubiquitous, the use of DT is not so different. For example, in the UK, a report edited by
Clark-Wilson, Oldknow and Sutherland (2011), cites other reports that conclude that, despite
considerable investment in DT in schools, these are underused within in secondary mathematics
classrooms and, if used, their potential is generally underexploited. The report also points to
classroom evidence suggesting that the use of DT has had emphasis

on teacher-led use, using mainly presentational software such as PowerPoint and interactive
whiteboard software. Revision software and online content services are also used, with the focus
being on the computer teaching mathematics alongside practice exercises. Where digital
mathematical tools such as graphing calculators, dynamic geometry, and spreadsheets are used,
these are conceived primarily as presentational, visual and computational aids rather than as
instruments to facilitate mathematical thinking and reasoning. (Clark-Wilson, Oldknow and
Sutherland, 2011, p. 19)

On his part, Trouche (2016), while pointing to a lack of research at a large-scale for analyzing the
real integration of technology in mathematics classrooms, reports that, in general, integration remains
local with a huge difference between schools and teachers. It is also mostly teacher-centered (at least
in the cases of England and France), with sometimes teachers showing students the use of the
technology, or being unable to analyze the effects of the technology being used. Monaghan
hypothesizes that, in the case of England, the increased teacher-centered use of DT in class in
classrooms could be due to the increase of interactive whiteboards (IWBs) with “a very large
proportion of the use of IWBs is teacher use of IWBs with PowerPoint (rather than interactive
mathematics software) and the result is ‘teacher demonstration,’” perhaps pointing to students “not
being granted wide access to tools to explore mathematical relationships” (Monaghan, Trouche &
Borwein, 2016, p. 388). I argue that teacher demonstration is due also to the inertia of old school
practices and cultures that are teacher-centered, particularly in countries where this model is still
prevalent, such as Mexico.

I summarized these observed predominant uses in classrooms of technology in Sacristan (2011;
in press), as being for:

* Presentation or demonstration (e.g. PowerPoint, projecting graphs, videos, etc.)

* Easier visualization

¢ Easier, faster computation and accuracy

* Saving time (time optimization)

¢ Checking paper-and-pencil task results

* Information

* Student’s revision, exercises or “drill and practice” through interactive, or online
resources (such as pointed by Clark-Wilson, Oldknow & Sutherland, 2011, above)

¢ Communication (e.g. using email or Internet for sending homework)

With many times:

¢ Little innovation (doing, as Papert criticized, the same or similar tasks as with paper-and-
pencil)

* A lack a sense or understanding of didactical and mathematical purposes for the use of
digital tools in their classrooms; leading to technocentrism (showing or teaching about
the tool itself—see Brennan, 2015—rather than using the tool for mathematical purposes)
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* Ignoring the purpose or potential of the tools (e.g. no dragging or dynamism using DGE,
as narrated above), indicating, again, the influence of graphocentrism
* Unlinked to other resources (Monaghan & Trouche, 2017)

Thus, when we look at the evidence of how digital technologies are used in schools, we see that
in fact they are used in the direction that Papert (2006) claimed: to teach and serve the old (e.g. serve
existing curricula), with much of their potential ignored.

On the other hand, the research literature is full of successful innovative practices with
technology at experimental scale. But many authors, and at different education levels (see also,
Clark-Wilson, Oldknow & Sutherland, 2011; Artigue, 2012), point to how

despite over 20 years of research and curriculum development concerning the use of technology
in mathematics classrooms, there has been relatively little impact on students’ experiences of
learning mathematics in the transformative way that was initially anticipated. (Clark-Wilson,
Robutti & Sinclair, 2014, p.1)

In Sacristan (in press), I reflected on the gap between research results and what happens in
classroom practices. Clark-Wilson, Robutti & Sinclair (2014) indicate that a response to this has been
increasing research on the role of the teacher; and that will be the theme of the last section of this
paper. But I will focus now on the reasons, such as different types of obstacles and barriers, impeding
more meaningful technology integration in schools and practice.

Difficulties and Challenges for the Integration of DT for Math Learning in Classrooms

Between 1997 and 2006, a government-sponsored national program in Mexico called EMAT
(Teaching Mathematics with Technology) was put into practice for gradual implementation of
expressive computational tools, together with a pedagogical model, in the middle-school
mathematics classrooms (see Sacristan & Rojano, 2009). We learned a lot from that program in terms
of issues that emerge when attempting large-scale massive implementation of technologies in schools
(even when carefully designed and planned through the expertise of an international team of
mathematics education researchers, as was EMAT). Difficulties and obstacles were encountered at
different levels: (a) the teacher, student and classroom level; (b) the school level; (¢) the local
authorities level; and (d) the national government level; and of different kinds related to:

* changes in classrooms practices and cultures: both teachers and students were
unaccustomed to working in a more exploratory, student-centered, setting, and teachers
had difficulties in adapting to the proposed pedagogical model

* integration of technological tasks with the established curriculum

* ftime issues: time (or lack of) for preparing the technology-based tasks, and for their
implementation

* (teachers’) content knowledge of mathematics: the use of technology made teachers
aware of their deficiencies of their mathematical content knowledge, leading to two types
of consequences: (i) some teachers did not want to continue working with technology; or
(i1) in other cases, it motivated and helped teachers improve their content knowledge.

* professional development and support in terms of the tools — which was usually
insufficient and without continuity

* teachers and students’ attitudes, beliefs and confidence with regards to the use of the
technological tools and programs: these have been shown to have an impact on students’
learning with the tools (Sacristan, 2005). As we put it in Sacristan and Rojano (2009,
p-213): “Putting it bluntly, ‘good teachers’ achieve good results: they are able to take
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advantage of the fechnological tools and their students benefit from those experiences;
but less experienced, poorly trained teachers, or simply teachers who dislike the
technological tools, do not do so well.”

* technical difficulties

* administrative and bureaucratic issues, policies and political issues, including lack of
communication between the different levels of authorities. It is also worth noting that the
program was discontinued in 2006 due simply to a change in government (change in
policy). It did survive at some local levels, mainly in places where there would be some
form of local support, such as a self-appointed regional coordinator.

In other studies (e.g. Sacristan, Sandoval & Gil, 2011; Miranda & Sacristan, 2016), there were
similar findings pointing to reasons that impede the integration by teachers of DT. Among these:
difficulties in accepting changes (even when they recognize possible benefits of DT) with many of
them continuing doing the same as before; fears (e.g. of losing control of the class, of showing
mathematical and technical deficiencies); difficulties in understanding how to integrate technologies
in terms of the mathematical aims; lack of adequate infrastructure; and lack of time.

These difficulties are similar to those mentioned in the BECTA (2004) review on barriers to the
uptake of information and communication technologies (ICT) by teachers. That report categorizes
barriers (e.g. lack of access to resources—including lack of hardware, inappropriate organization,
poor quality software—lack of time, lack of effective training, technical problems, lack of
confidence, resistance to change and negative attitudes, no perception of benefits) into school-level
barriers and teacher-level barriers, which can be external and internal barriers. Likewise, Clark-
Wilson, Oldknow and Sutherland (2011, p. 20), cite a report from the UK’s National Centre for
Excellence in Teaching Mathematics where mathematics teachers‘ concerns about the use of DT are
listed as related to:

¢ alack of confidence with digital technologies;

e fears about resolving problems with the technology;

* fears about knowing less than their learners;

e access to digital technologies;

* inappropriate training;

¢ lack of time for preparation;

* alack of awareness of how technology might support learning;

* not having technology use clearly embedded into schemes of work,

and include among the barriers to the more student-centered use of DT:

* an inadequate guidance concerning the use of technological tools in curriculum
documentation;

* assessment practices;

* and “a perception that digital technologies are an add-on to doing and learning
mathematics”.

To these we can add the current overload of information and availability of resources of varying
quality that are available to teachers through the Internet.

From Challenges to Trends and Lessons
The NMC Horizon Reports (www.nmc.org) takes a look every year (since 2012) at technology
adoption, at both K-12 and higher education, enlisting (six for each) (i) key trends accelerating
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technology adoption, (ii) significant challenges impeding technology adoption, and
(ii1) developments in technology, poised to impact teaching, learning, and creative inquiry.

Among the trends that are identified in several of the reports (Johnson et al., 2015; Adams
Becker et al., 2017; NMC/CoSN, 2017) that will be having an impact—in the short, mid and long
terms—on technology adoption, are: an increasing use of collaborative learning approaches and of
blended learning; a shift from students as consumers to creators and the recent push for coding
literacy; the rise of STEAM learning, which seeks to engage students in interdisciplinary learning
breaking down traditional barriers between different classes and subjects—one of the criticisms
raised by Papert (2006), cited at the beginning of this paper; a rethinking of how schools work,
shifting to deeper learning approaches (e.g. project-based learning, etc.) and a redesigning of learning
spaces.

At the same time, one of the challenges that the NMC Horizon Reports consider difficult (even
“wicked” at higher education level), is the changing role of teachers and educators, whose

primary responsibilities are shifting from providing expert-level knowledge to constructing
learning environments that help students gain 21st century skills including creative inquiry ...
acting as guides and mentors, ... providing opportunities for students to direct their own learning
trajectories. (NMC/CoSN, 2017, p. 7)

The nine years of EMAT led us to identify some of the key factors for success and for
transforming school practices and teacher’s roles, such as: adequate planning, gradual
implementation, continuous professional development and support, and enough time (years) for
assimilation and integration (Sacristan & Rojano, 2009). In relation to the latter, we found that even
the most enthusiastic, committed towards the program, and supported teachers, needed at least three
years in order to appropriate themselves of the tools and pedagogical ideas. But those who did
became very successful in the future, continuing using the resources from the program for many
years on their own, even until even this day. In fact, during the writing of this paper, I received an
out-of-the-blue call from one of the teachers with whom [ worked during the EMAT program. She
told me of the limited resources in the school where she now works, in a very low-income area, but
how, by implementing the EMAT materials in the last few years (more than a decade after they were
developed), student achievement and assessments had improved dramatically, and she had even won
two prizes for her work (one of them for her students’ explorations with Logo of the four-color
theorem). This case shows an appropriation by the teacher of the resources, tools and pedagogical
ideas.

It is thus clear that the key player for successful implementations of technology-centered
educational innovations is the teacher.

the role of the teacher is very important, and his/her beliefs, insecurities and lack of mathematical
and technical preparation affect the possible impact that the use in the classroom of these
technologies can have on students’ learning and even attitudes. The need for careful, considered
and continuous work with teachers is thus extremely important. A priority in this kind of work
should be the integration of digital technologies with the work that teachers are required to do, to
take them into account at all steps of the implementation process, and to assist them in
developing pedagogical strategies. (Julie et al., 2010, p.380)

With respect to the latter, I would like to reflect briefly on policy aspects and the changing role of
teachers in the design of technological implementations.

A Reflection on Policies for Technology Integration, Societal Changes and Teachers
The EMAT program was a top-down design: a policy-driven decision that attempted to achieve
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technology integration in mathematics teaching and learning, and teachers were not involved in its
design. It may have succeeded in small scales, but for an innovative educational program to catch on,
it cannot be only about policy-driven implementations, no matter how carefully and well designed it
is. For appropriation by teachers of new resources and pedagogical ideas, it may be a prerequisite to
involve teachers in the design from the beginning, not just as participants, but as co-creators. In fact,
rather than a technologically-driven model of technology integration, Hennessy, Ruthven, and
Brindley (2005) point to the importance of teacher involvement, although also influenced by the
teachers’” working contexts, for effecting classroom change. Furthermore,

approaches with the most potential to bring about genuine improvement in learning mathematics
are those that resonate with teachers—with their interests, beliefs, emotions, knowledge, and
practice. (Kieran, Krainer, & Shaughnessy, 2013, p. 364)

But involving and engaging teachers in the design of technological implementations is only one
part of what is needed. There are dialectical forces at play here. On the one-hand, top-down policies
do generate part of the change: they can initiate it and sow seeds of transformation (as in the case of
teachers from EMAT, who 15 years later, continue working and transforming classrooms with what
they learned); even if, as an imposition, it is unlikely it will resonate with the majority of teachers.
On the other hand, changes that take place in society due, for instance, to technological advances—
such as the trends mentioned in the NMC reports above—also influence policies. In any case,
professional development and support is needed. In Trouche, Drijvers, Gueudet, and Sacristan
(2013), we discussed the above and said:

Merely providing access to technology is not enough for promoting educational change; support
for teachers’ professional development is a necessary precondition for a thoughtful and fruitful
integration of technology. [...] Policy shifts do not fall out of the blue, but reflect or intend to
support underlying views on learning, and are mediated by new paradigms of teaching and
learning. (Trouche et al., 2013, p. 756)

The issue of professional development was also touched upon in the NMC reports, in relation to
the changing role of teachers:

The evolving expectations also change the ways teachers engage in their own continuing
professional development, much of which involves social media, collaboration with other
educators both inside and outside their schools, and online tools and resources. Pre-service
teacher training programs are also challenged to equip educators with digital competencies amid
other professional requirements (NMC/CoSN, 2017, p. 7)

I will now focus on teachers as the core of the efforts for improving meaningful technology-
integration and promoting changes in classroom cultures.

Improving Technology Integration in Math Classrooms: Focus on Teachers
Based on what was said in the previous sections, this focus on teachers has two aspects:
(i) professional development, and (ii) enhancing teachers’ involvement in generating changes,
resources and decision-making.
I will begin by drawing from two experiences of in-service professional development programs
of which [ was part of, both of which emphasized self-reflection by teachers.

Two Experiences of Reflective Professional Development Programs for In-Service Teachers

As the EMAT experience taught us, there is a need to strengthen the mathematical content
knowledge of teachers in our country, so the training and self-reflection processes in both programs
addressed three aspects: the technological, mathematical and pedagogical.
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Experience 1. From 2005-2010, I participated in a long-term professional development program
for a small group of six in-service teachers in Mexico. As described in Sacristan, Sandoval and Gil
(2011), our approach was for teachers to reflect on the changes in their practice through both training
and classroom implementation of DT, document their findings and present them in seminar sessions
to their fellow participants and the tutors. For this, we developed a professional development model
(Fig. 1), based on works (e.g. Artzt and Armour-Thomas, 1999) that provide models in which
teachers reflect on their instructional practice. In the pedagogical design of our model, we considered
teaching as a constructive process that requires reorganizing and reinterpreting the subject matter and
the practice as a result of experience (Thompson, 1992); and that the knowledge that is derived from
social interactions in a (real-life) context is more valuable and significant for the teacher (Liu &
Huang, 2005).

Figure 1. The professional development model described by Sacristan, Sandoval & Gil (2011).

In our program, teachers were involved in: (a) training and development of abilities, for the use
of DT in the classroom (mainly Spreadsheets, Dynamic Geometry, CAS and Logo, as well as some
applets); (b) the design and planning of teaching strategies and activities that integrate DT; and (c)
engaging in observation and reflection-on-action (Bjuland, 2004) of the changes in their own
teaching practice with the new tools. The participants also studied and discussed theoretical
frameworks and pedagogical models for a meaningful incorporation of DT into the (mathematics)
classroom. In parallel, the participants attempted to incorporate DT, as well as the pedagogical
models studied, into their real-life classroom activities, analyzing and reflecting upon the potentials,
limitations and changes brought forth by this incorporation of DT into their own practice, and that of
their colleagues, from various perspectives. These activities and model are schematized in Figure 1.
This experience, even though it was a top-down initiative, gave the participants the opportunity to
reflect upon and share their personal experiences with the other participants. We consider that the
diverse elements of the development model—training, continuous support, processes of reflection,
self-observation, and promoting equally the technological, mathematical and pedagogical aspects—
were significant for helping generate changes in the participants’ professional practices, and enabled
them to construct didactic strategies for the use of DT, more in accordance with the specific needs of
their students and/or of other teachers. Half of them even appropriated themselves of our model’s
ideas, for peer training, designing and implementing a training program for other teachers and
colleagues.

All six participants considered the educational system as very rooted in traditional ways and
difficult to change; but they perceived a change from a technical and presentation use of DT, to more
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mathematically-centered uses, both in themselves, and in some of those they trained.

Experience 2. In 2009-2011, as described in Parada, Sacristan & Pluvinage (2013), we used a
theoretical and methodological model called the Reflection-and-Action (R-&-A) Model, for
promoting reflective processes—as a complement to professional development, and for strengthening
the teachers’ mathematical content knowledge—in two communities of practice (CoP) of
mathematics educators (in-service teachers and researchers) in Mexico: one with 46 members;
another with 125 members, which met through internet forums and periodically in person. The
R-&-A model centered on a mathematical activity that was reflected upon before, during and after a
teaching experience, i.c., through three reflective processes: (a) reflection-for-action; (b) reflection-
in-action; and (c) reflection-on-the-action. The reflections that emerged enhanced teachers’
mathematical content knowledge related to the specific activities, and also helped them recognize the
need to adapt methodological and didactic resources, such as DT, to the purposes and characteristics
of each student group.

Teachers as Active Collaborators in Meaningful Technology Integration

In the above section, I presented professional development experiences that promote teacher
reflections and collaborations. The first one, though successful, was not a teacher initiative. The
second one, included a researcher as mediator who proposed and coordinated the mathematical
reflective processes. I believe that in order to generate change, teacher involvement and collaboration
with researchers needs to take place in a way that makes teachers feel they are decision-makers. I
consider this crucial in terms of motivation, beliefs, and overcoming affective apprehensions — which
we have seen are areas that can be important barriers to integration and sustainability. Sustainable
CoPs or networks involving both researchers and teachers are important and ICT makes it possible to
share, discuss and remix resources online. A useful example from which we can draw lessons, is that
of Sésamath (http://www.sesamath.net/) in France (see Trouche et al., 2013), which emerged as a
bottom-up approach where mathematics teachers started to share and design resources and software.
A bit over ten years ago Sésamath started to collaborate with researchers (Trouche et al., 2013). The
quality of the resources at the beginning may not have been so good but through the sharing between
teachers, and collaboration with researchers, these were greatly improved (Monaghan & Trouche,
2017).

Explaining the reasons for the success of Sesamath requires specific research. The existence in
France of the IREMs (Institutes for Research on Mathematics Education), a national network that
involves many mathematics teachers, has played an important role. A similar project could
perhaps not succeed in countries were such a network, linked with mathematics education, did
not exist. (Trouche et al., 2013, p.772)

Concluding Remarks

In this paper I began by quoting Papert (2006) and his criticism of educational systems as a way
of introducing the issue of the difficulties of creating meaningful change and technology-integration
in classrooms, and the inertia of the classroom and the paper-and-pencil cultures that limit change.
This was then expanded in listing some of the barriers identified from decades of research, to that
change and integration. After a brief excursion into some of the lessons learned from technological
and educational trends, I focused on the teacher as the key player for successful and transformative
technology-integration and argued in favor of promoting models of collaboration (such as CoPs and
networks) between teachers, researchers and policy-makers that both enhance teachers’ professional
development, empower them and provide a means for sharing, discussing and improving resources
and their implementations, as well as overcoming some of the detected barriers. But one of those
barriers is time: educational systems need also change (perhaps pushed by the trends of society) in a
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way that makes them more flexible for allowing teachers more time to engage in collaboration and
innovation.

There are some other aspects that I did not cover in this paper, and that are worth reflecting upon.
For instance, what role do MOOCs have, or will have, both in terms of changing the role of teachers
and of technology for teaching and learning mathematics; as well as for teachers’ professional
development? Or are they a way of up-scaling current educational practices without truly innovating
them?
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CROSSROAD BLUES

Nathalie Sinclair
Simon Fraser University
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In this paper I take up the questions posed by the conference organisers with respect to what we have
learned and where we are going in technology-based research in mathematics education research. 1
begin by troubling the metaphors of crossroads and intersections and argue—through a wide range
of considerations in relation to past research, to theory development, to teaching practices, to
assessment and curriculum design and to concerns around access and equity—that there may be
more fruitful metaphors for understanding our past and imagining our future.

Keywords: Technology, Learning Theory, Equity and Diversity

The metaphors of ‘crossroads’ and ‘intersections’ that were chosen for this conference are worth
dwelling upon, in relation to research on the use of digital technologies. Crossroads are often used
symbolically in literature, drawing on Sophocles’ work Oedipus, to indicate a crucial moment of
choice. In Oedipus there were three possible roads to follow, perhaps evoking past, present and
future. But Sophocles’ idea of choice may be less about making an independent decision, than about
following the roads that have been carved by destiny: Oedipus was always going to end up killing his
father. The invitation of the conference organisers to think in terms of crossroads provoked for me
some questions about whether we really are at a decision point with numerous options available and
whether one choice might be inevitable. The metaphor of intersections, which is similar in some
ways, also has more mathematical connotations, ones that evoke significant ideas in geometry,
especially around whether lines will intersect, how many times they will intersect and what it means
to not intersect at all—all these questions being beautifully perturbed by moving to dimensions
beyond the plane. But what could it be, in the context of research on technology in mathematics
education, that could be seen as a crossroad or an intersection?

In considering this question, I was reminded of the work of the anthropologist Tim Ingold
(2007), whose book Lines: A brief history traces the way in which the very idea of /ine functions
metaphorically in Western society. He argues that it is so deep and entrenched that we can often find
ourselves using it to describe a wide range of phenomena—often using words such as trajectories,
paths, roads, trails, courses, routes—that might not actually be so linear or straight or one-
dimensional. In his book, Ingold distinguishes two ways of thinking lines: as transporting and as
wayfaring. In the former, we might think of getting from point A to point B and the line is the
journey that gets us there. In the latter, the line is what one makes as one moves; there is no path
independent of the travelling. Transposed to a theory of learning, the former would tend to conceive
of learning as a sequence of journeys one might make from one concept to the next; the latter would
focus on the act of tracing, on the direction that is taken and the new territory being explored. The
former involves reaching successive destinations while the latter involves creating paths. Whereas
crossroads and intersections, at least in my own imagery of them, have the past, the present and the
future already laid out—you can go this way or that—I wonder whether it is possible to dwell in the
present and so withhold the temptation to pre-determine a destination, let alone the journey that will
take us there. Getting off the plane, we might even be able to think of creating paths that loop around
like a Mobius strip or fan out into a surface or sprout into 17 dimensions, only four of which we
might actually be able to see. As with most of our thinking around education, such an approach,
which embraces multiplicity, indeterminacy and nonsense, may be the best way to handle the
complexity of digital technology use in mathematics education.
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In what follows, I have attempted to address the questions and prompts offered by the conference
organisers, not in a way that is exhaustive, but that is opportunistic—drawing on my own research
and research interests in technology. I will try to keep the provocation of anti-crosswords alive
throughout, inviting readers to think less in terms of the image in Figure 1a and more in terms of the
image in Figure 1b, which is a replica of the cover of Ingold’s book.

Figure 1. From transporting (intersections and crossroads) to wayfaring.

What we Have Learned from the Routes we Have Traversed

One way of seeing research in mathematics education is as an activity that enables us to answer
questions, question such as: Should digital technologies be used in mathematics classroom? When is
one technology better than another? What does a given technology change the way students learn?
Another way of seeing research in mathematics education is as a practice of posing new questions,
perhaps transforming the questions we started with so that they better respond to the complexities of
the mathematics classroom. In this second kind of practice, the questions shift: new paths are created.
Researchers have realised that the first question listed above, for example, depends less on empirical
evidence than on assumptions about the goals of mathematics education. The second question may
shift if one realizes that each technology might produce a different mathematical conception, in
which case deciding on which is the best depends on many factors, ranging from aesthetic choices in
mathematics to considerations of what might be evaluated on standardised tests. The third question
listed above will also morph as researchers begin to appreciate that the student-technology dyad is a
reductive focus, and that the role of the teacher, of the curriculum and of the classroom environment
are also significant factors in what is learned.

To answer the question of what we have learned, it thus seems reasonable to consider how our
questions have changed over the past few decades of research on the use of technology in
mathematics education. I turn to the recently published Second Handbook of Research on the
Psychology of Mathematics Education (Gutiérrez et al., 2016), which contains a chapter on
technology (Sinclair & Yerushalmy, 2016) that considers the research published in the PME
proceedings from 2006-2016. This is just one source—other Handbooks could also have been
considered—but I have chosen it because it is international and because it explicitly compared
research over the past decade with research conducted over the previous decade, which was reported
in the first Handbook of Research on the Psychology of Mathematics Education, which was
published in 2006.

The authors of the technology chapter report that while the 2006 Handbook had been structured
into different topic areas (geometry, arithmetic and algebra), the research over the past decade was
less amenable to such a categorization, in part because the research was less explicitly concerned
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with particular mathematical concepts. Instead, the primary concerns were theory, the role of the
teacher, new technologies and the design of tasks and assessment. The authors found that while the
majority of papers in PME proceedings were related to the use of well-known digital technologies
such as dynamic geometry environments, computer algebra systems, graphing calculators and
spreadsheets, these papers were less focused on the question of ‘do they work?’ than on questions
such as: how do teachers integrate them? How might suitable tasks be designed for the use of a given
technology? How might new theories help us understand the role that technologies play in teachers’
and students’ mathematical activity? Indeed, with respect to the first question, the authors remark on
the attention not only to the teacher’s role in using a given technology in the classroom, but to the
challenge of orchestrating several types of resources: “Technology has opened up new challenges for
teaching, not only in terms of their knowledge and beliefs, but also in terms of the complexities of
integrating different kinds of resources” (p. 236). The shifting emphasis from the learner to the
teacher can also be seen in the recently published edited collection entitled The mathematics teacher
in the digital age (Clark-Wilson et al., 2014). This book was heavily oriented towards theory and
professional development, but marked by a near absence of focus on mathematics. These new strands
of research become entangled with prior foci of interest.

An entire section of the chapter is devoted to theorising. The authors cite Drijvers, Kieran and
Mariotti’s (2009) “plea for the development of integrative theoretical frameworks that allow for the
articulation of different theoretical perspectives” (p. 89), especially ones that can extend and refine
the two dominant theories found in European research: instrumentation theory and the theory of
semiotic mediation. Sinclair and Yerushalmy report that while these two theories, which attend
explicitly to the use of digital tools, were predominant, several other theoretical perspectives were
used in the PME proceedings over the last decade, many of them not specifically attending to digital
tools. The authors write that,

With respect to the papers that do draw on theories, there has been significant development over
the past decade, which suggests that the field of mathematics education related to digital
technology has certainly matured; it has evolved from being an “experimentation niche” and has
become an established domain of research that now carries a more solid message for the future

(p. 251).

The authors go on to identify two issues related to theory use: first, they argue that theories related to
the use of digital technologies need to be better coordinated with more general and established
theories; second, while there has been a burgeoning of theory use and development, the concomitant
development of associated methodologies has not kept pace. The idea of better coordination might
imply some kind of intersections with other theories, but the simple crossing of one theory with
another rarely does justice to the epistemological, ontological and axiological commitments of each.

One thing that we can say about “what we have learned from the routes we have traversed” is
that the use of new theories has enabled us to ask different, more refined questions about the use of
technology mathematical teaching and learning. For example, instead of asking “did the students
learn fractions better?” an instrumental genesis approach might focus more on the new schemes that
the students developed in using a given technology to work with fractions; a semiotic mediation
approach might focus on the particular gestures that students made while using a technology and how
they were transformed into mathematical signs by the classroom teacher. In both cases, there is not a
revisiting of the initial question, but a re-layering of it. These questions focus less on the determining
whether digital technologies should be used or whether they work better than other resources; they
instead take technology use as a given and investigate the complex and often unexpected effects on
how learners move their bodies, how mathematical concepts seem to arise and crystallise in new
ways and how aspects of classroom activity, such as language use, student agency and material
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arrangements (of furniture, devices, bodies) change as well.

One final note on what we have learned relates to the evolution of research identified by Sinclair
and Yerushalmy from the study of the use of “second wave technologies”', which are open in the
sense that they do not contain embedded tasks, to an interest in task embedded digital technologies,
“which direct the actions and uses to more specific purposes” and evaluative digital technologies,
which “provide feedback on students’ responses and actions” (p. 252). The inclusion of tasks and
evaluative features may improve accessibility for teachers in that it takes care of some of the
decisions that teachers would have to make with more open technologies such as identify and
choosing problems and assessing student learning. Of course, the streamlining of open digital
technologies may also have an adverse effect on classroom use, inasmuch as openness has often been
taken as crucial for encouraging curiosity, expressiveness and agency. Nonetheless, we see in this
evolution a complexifying of technology in which it is not simply the hardware/software device with
strict boundaries, but instead a more amorphous entity that includes its associated tasks and modes of
use. The question is less about technology A then it is about technology A using task B in setting C.

Addressing Issues of Access and Equity within Mathematics Education Today

For the most part, at least according to reports in the literature, the long-standing challenge of
access—that is, whether students and teachers have access to computers and to software—is no
longer the main hurdle in digital technology integration. Not only have computers become more
common in classrooms, but many schools have embraced tablets; furthermore, the trend towards free
software (including free versions of software programs that were originally licensed) has removed
some hurdles for teachers, especially teachers in developing countries".

As intimated above, the greater hurdle for technology integration relates to teaching practices, to
curriculum and to assessment—and, in a sense to access to professional development (see Clark-
Wilson et al., 2014). In terms of equity, there have been two main, different approaches to supporting
diverse learners’ needs through the use of technology. These seem to entail quite different
understandings of what certain learners need in order to have more mathematical success. The
development of new digital technologies addressing equity has focused mainly on students diagnosed
with learning disabilities (MLDs), as well as deaf and blind students'. In the area of the MLDs, for
example, there have been several software programs created to help struggling children improve their
number sense. These tend to be focussed on particular aspects of number and designed as instructive”
environment, which provide instant evaluative feedback and tend to target procedural skills. Such
programmes aim primarily to address the deficits of the children; equity thus identifies the problem
as belonging to the learner (rather than to the mathematics, the environment, etc.). Unfortunately,
despite some promising results (Butterworth & Laurillard, 2010), researchers such as Goodwin and
Highfield (2013) have shown that children working with the instructive digital technology were more
focussed on receiving positive feedback than on discussing or reflecting on the embedded
mathematical concept.

A different approach has been taken up by researchers in Brazil (see Fernandes et al., 2011;
2013; Santos, et al., 2013), who have studied the use of digital technologies in inclusive classrooms
(that may include deaf, blind, seeing and hearing students), and have developed more manipulative
technologies. Their design and research process seeks to identify different ways of interacting with
mathematics that may help all learners, and not just those diagnosed with disabilities. Such work
requires re-thinking mathematics (as something that can be heard, for example, instead of seen
through symbols or graphs) instead of merely simplifying traditional mathematics or breaking it
down into steps. Their approach to equity identifies the problem as belonging less to the learner than
to the mathematics (or the ways it is taught). A similar approach was taken in the study reported by
Cohen et al. (2017), which involved the use of the manipulative, mutitouch iPad app TouchCounts
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with grade 1 children identified as low-achievers in the mathematics classroom. The app, which
enables tangible, visual, aural and symbolic modes of interaction, was used both in the whole
classroom situation, but also in a smaller group setting with the identified children. The use of
fingers, which enabled these children to improve their subitising and awareness of place value, was
also helpful for the other children in the classroom.

Returning to the metaphors of crossroads, it seems that one image that drives the choice of
technology used with MLDs is that the children cannot take one road, so they must take the other,
thereby setting off a chain of entailments about two kinds of mathematics, two kinds of learners, two
kinds of technology. Such an approach fails to consider the extent to which the traditional technology
of mathematics (paper and pencil) is implicated in the very nature of school mathematics and the
possibility that new technologies may change what school mathematics looks (and sounds and feels)
like, and what mathematical actions might be valued in the classroom.

Barriers within Research Traditions, Educational Policy, and Teaching Practice that Impede
Researchers’', Students' and Teachers' Success

In the first section, I identified the recent burgeoning of theory that was evident in the last 10
years of research published in the PME proceedings, as well as the current tendency for digital
technology-specific theories to be isolated from other theories in mathematics education. A similar
phenomenon—the segregating of technology and non-technology research—can also be seen in peer-
reviewed journal publication. This is evident when comparing articles published in JRME, FLM and
ESM (three of the top-ranked, long-standing international journals in mathematics education). As
Table 1 shows, there are relatively few articles that focus explicitly on the teaching and learning of
mathematics using digital technology. The frequency of publication seems to be quite stable when
comparing articles published in 1996, 2006 and 2016.

One reason for this low frequency is the fact that there are several journals in which authors can
choose to publish their work, journals where technology is an explicit focus (for example, [JCML
(now TKL), DEME, IJMTL, CJIMSTE). Publications in these ‘technology journals’ may not be in
conversation with publications in journals such as JRME, FLM and ESM, thus leading to a group of
theories that specialise in the use of technology and another group of theories that more or less ignore
issues relating to technology"”. This has been partially true for the influential learning trajectory
research, which though tending to a more Vygotskian perspective, which recognises the central
importance of language and tools in learning, continues to identify and disseminate trajectories that
do not specify the use of digital technologies. If technologies were used in any of the tasks studied by
researchers, it is assumed that the stepping stones from one concept to another could be made no
matter what technology is used—but the default technology is almost always paper and pencil. This
point of view contradicts the Vygotskian premise, but also reifies a certain vision of mathematics
teaching and learning that makes it more difficult for digital technologies to be taken up more
widely—and thus contributing to the continued debate around “the basics” (see Roth, 2008).

Table 1: Comparison of Articles Focused on the Use of Digital Technology Across Journals

JRME FLM ESM
Technology Total Technology Total Technology Total
2016 1 12 1 29 3 61
2006 0 13 2 31 0 50
1996 0 23 1 23 2 32
Total 1 48 4 83 5 143
2% 5% 3%
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The ignoring of technology has also tended to occur in the areas of curriculum design and
assessment (some of which is based on learning trajectory research). While standards in most
countries may have language that includes reference to the importance of technology, the actual
concepts that are listed, and the order in which they are listed, are determined in a way that is
absolutely independent of any particular digital technology. For example, in the area of geometry,
which is my research focus, a curriculum or textbook that asks students to engage in geometric
construction by drawing shapes that have numerically determined side lengths and angle measures is
anti-dynamic". This after two decades of research showing the pedagogical benefits of using
dynamic geometry environments in the teacher and learning of geometry.

Lines can be dangerous. Lines can begin as imaginary paths to be followed, but once carved, they
can become troughs that are hard to escape. Research in the use of digital technologies can
sometimes reinforce troughs, when it focuses more on how technologies make concepts more
efficient or quick to learn, rather than underscoring the sometimes unexpected conceptual shifts that
innovative digital technologies can occasion.

The issue of assessment may be particularly important in high school and undergraduate
contexts, where the use of digital technology on tests is often disallowed, meaning that students may
be learning with a given technology but are being assessed as if that technology was a disposable
scaffold to learning. Sangwin et al. (2010) argue, “if a teacher encourages students to make extensive
use of tools in a course but does not allow their use on the end-of-course test, are students being
given the opportunity to show what they learned with the use of such tools?” (p. 229). The issue is
complex, however: in a study of secondary school teachers in Canada, Venturini (2015) found that
teachers were reluctant to use digital technology assessment tasks because they were concerned that
the students would learn as they used the digital technology, which was seen to contradict the
purpose of assessment.

In terms of teaching practices and teachers’ success, there has certainly been a dearth of research
in this area. As Sinclair and Yerushalmy write, “Compared with research on student learning with
technology, research on the teacher has not been as well developed” (p. 260). Nascent theory
development began with the framework of TPACK, which describes the different types of
knowledge that teachers may use in their teaching practices, adding technology to the well-known
pedagogical and content knowledge aspects. As a theory, it is rather limited. More recently, theories
that provide a more analytic lens on the role of the teacher in teaching with digital technology have
been developed, based on theories of instrumental genesis (such as instrumental orchestration).
Ruthven (2014) has also proposed a framework for analysing the teaching expertise that underpins
successful use of digital technology in the mathematics classroom. His framework highlights the
tensions that arise for teachers when trying to integrate technology, that relate to the lack of
articulation between digital technologies and other resources such as textbooks, curricula and
assessment. Worth studying would be situations in which this articulation has been attempted
(perhaps with a high-quality e-textbook (see Pepin et al, 2015) or with trajectories that have been
elaborated using digital technologies).

Laying the Groundwork for Future Crossroads or Intersections Among Theory, Research, and
Practice

When thinking about future crossroads or intersections, two recent, related developments in
educational research come to mind, both of which are highly relevant to technology. One is the
association of mathematics with computational thinking (CT) and the other is the emergence of the
idea of STEM. Both developments have received substantial funding over the past decade (and have
given rise to specialized conferences, journals and special issues) and will likely shape future
discussions around the role of technology in mathematics education. In both cases, the role of
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technology shifts quite significantly from the way it has been conceived in research over the past two
decades. Before commenting on whether or not we are at a crossroads, I would like to look more
closely at each new development in turn.

In the case of CT, the research initiatives most closely associated with mathematics education
have involved studying the use of computer programming as a means to support mathematical
learning, much in the tradition of Papert (1980). For example, Benton et al. (2017) as well as
Gadanidis et al. (2016) explore the use of Scratch programming in relation to concepts that are
recognizably mathematical (e.g., angle, binomial theorem). In these two cases, the digital technology
in question is one that was not designed specifically for the teaching and learning of mathematics,
and that entails practices and values that are specific to the domain of computer science.

In the case of STEM, the nature of the “T” seems to be less precise than in CT, involving not so
much the use of programming (or coding), but instead the use of digital tools. For example, in the
STEM videos published by the Teaching Channel", students use scientific tools such as digital
thermometers or calculators as well as simulations (a programme for building and testing
rollercoaster). In these cases, the technology is not vectored towards the learning of mathematics, but
rather to the completion of what is essentially a science or engineering project. Whereas the CT
connection privileges computer programming as the primary mode of engagement with digital
technology, the STEM agglomeration features the use of digital technologies that are oriented
towards their pragmatic value rather than their epistemic value (see Artigue, 2002 for a discussion of
the distinction between these two values).

I bring up these two examples because of the stress they will likely place on the way digital
technologies are used and researched in mathematics education. They displace technology from
being constitutive of mathematics (a la Rotman, 2008), which may result either in the displacement
of technology to something you do in your CT lesson, not in mathematics, or in the isolating of
technology as one element in a STEM fruit salad of disciplines that shares little disciplinary value
with mathematics. Again, a crossroads view of things encourages us to think about choices, about
going this way or that. But, at this moment in time, what we may need more of is attending to the
multiple threads in which mathematics education is entangled and how the choices that seem on offer
are already the consequence of a set of assumptions and commitments—and to think, what could
things look like before the crossroads?

Acknowledgments
Thanks to David Pimm for his reactions to the first draft and his gentle way of elbowing me off
the road. Thanks also to Sheree Rodney for collecting the data used in Table 1.

Endnotes

' Sinclair and Jackiw (2005) describe three ways of technology evolution in mathematics
education. The first wave focused on learners’ interactions with technology (such as Papert’s
research with Logo); the second wave shifted from programming languages to technologies that were
more transparently related to the school mathematics curriculum, such as graphing calculators,
computer algebra systems and dynamic geometry environments; the third wave was concerned with
technologies that attended to the social context of the mathematics classroom.

i But this should not necessarily be seen as a positive development for mathematics education.
Paying software programmes were maintained and came along with teacher support and, frequently,
curriculum materials; they could be expected to be developed by professional software designers, and
to last for long periods of time.

it As far as I am aware, there are very few examples of digital technologies that have been
designed for other groups of students who have been identified as under-achieving, based on gender,
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race or socio-economic status. One exception, which dates back to the 1990s, was Klawe’s E-GEMS
project (see Inkpen et al., 1995), which was targeted specifically for girls. A small number of
researchers have also explored the use of digital technologies with bilingual learners, who also face
particular challenges in the mathematics classroom (see Ng, 2016).

¥ Goodwin and Highfield (2013) distinguish three types of digital technologies: instructive,
manipulable and constructive. Sinclair and Baccaglini-Frank (2014) describe each as follows:

Instructive digital technologies tend to promote procedural learning, relying on evaluative
feedback and repetitive interactions with imposed representations. Manipulable digital
technologies enable the imposed representations to be manipulated so as to engage students in
discovery and experimentation. [...] Finally, constructive digital technologies are ones in which
learners create their own representations, which are often the goal of the activity, thereby
promoting mathematical modeling and what Noss and Hoyles (1996) characterize as expressive
uses of technology. Goodwin and Highfield argue that while instructive technologies may be
well-suited for procedural learning, manipulable and constructive technologies better support
conceptual learning.

¥ That is it possible to do this strikes me as quite interesting, but coherent with the view that
mathematics—and thus the learning of mathematics—can be separated from its technologies.

¥ And example of this can be found in the New York State Common Core Mathematics
Curriculum.

vil See, for example: https://www.teachingchannel.org/videos/teaching-stem-strategies and
https://www.teachingchannel.org/videos/stem-lesson-ideas-heat-loss-project. An analysis of these
STEM videos is currently in preparation (Bakos et al, in preparation).
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This paper is part of a three-year inquiry that supports and investigates the work of groups of
mathematics teacher educators using technological tools to design and implement multimedia
practice-based teacher education curriculum materials. This paper describes the kinds of activities,
interactions, and tools used by mathematics teacher educators to engage in such work. Using
Engestrom’s Activity Theory as a framework, we organize our observations of the groups’ work
sessions, noting differences across the groups’ objectives and ways of organizing the division of
labor and tools for engaging in the work. Our results suggest the activity of collective curriculum
development amongst teacher educators can take on at least three distinct types of interactions. We
present these types of interactions as “caricatures” (Lambdin & Preston, 1995), using data from all
of the groups to represent composite descriptions.

Keywords: Curriculum, Instructional Activities and Practices, Teacher Education-Preservice,
Teacher Education-Inservice/Professional Development, Technology

Introduction

We share data from an ongoing NSF project that engages groups of mathematics teacher
educators in collective work using technological tools to design and implement online practice-based
teacher education curriculum materials. The work within that project can be broadly framed as part
of the larger efforts to reimagine mathematics teacher education through the development of a
common curriculum (Ball and Forzani, 2011) centered on practice-based experiences for enabling
novices to learn to teach in, from, and for practice (Lampert, 2010). The efforts to reimagine
mathematics teacher education may tread some of the same terrain as the well-studied efforts to
reform K-12 mathematics through the design of better curriculum (e.g. Lappan & Phillips, 2009) and
professional development for supporting teachers to use those materials (Remillard, Herbel-
Eisenmann, & Lloyd, 2009). Both efforts attempt to address deficiencies in the current systems by
reimagining, in some measure, what happens in instructional settings (whether in K-12 or higher
education); and both treat curriculum as a lever to do that.

To understand how teacher educators may use the curriculum of teacher education to make
teacher education practice-based, it is useful to consider the different ways in which teachers use
curriculum in K-12 settings: While there is a tradition in which curriculum developers create
materials, teach them to teachers, and then teachers implement them with fidelity as a goal, that is by
no means the only use. Reviewing the literature of curriculum use studies, Remillard (2005)
describes three kinds curriculum use studies and their corresponding perspectives. The first set of
studies takes the perspective of curriculum as a “fixed entity” and takes for granted that the teacher
serves as a “conduit for the curriculum”. The second set of studies takes the perspective of the
curriculum as a more or less stable starting point from to which the teacher makes adaptations in
ways that may be more or less faithful to the curriculum design. The third set of studies takes the
perspective that the teacher is positioned as an active interpreter of the written curriculum and
“author” of the enacted curriculum (Doyle,1992). Ball and Cohen (1996) suggests a
reconceptualization of curriculum as a site first for teacher learning and then a resource for student
learning. This suggestion fits well into this third perspective as such an approach gives teachers an
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opportunity to work collaboratively with curricula materials in order to decide how they will use
them to solve the problems of improvement.

In this paper, we aim to describe and explain how groups of teacher educators organize their
collective work around the task of designing and implementing technology-mediated practice-based
curricular materials for teacher education. Research on curriculum use suggests that there could be a
host of ways that the field addresses the larger problems of developing common practice-based
curricular materials for teacher education; and each of these approaches comes with different kinds
of affordances and constraints for the work at hand. We wonder about the various ways in which
mathematics teacher educators might elect to organize themselves around the task of developing
technology-mediated practice-based teacher education materials and what sort of affordances and
constraints can be found across the variety of organizational choices. In this paper, we describe and
explain three ways in which 12 groups of mathematics teacher educators engaged in the activity of
collectively developing and using technology-mediated practice-based materials for teacher
education. To do this, we use methods from activity theory, noting differences across the groups’
objectives, division of labor, and tool usage. To illustrate these differences, we borrow a practice
from Lambdin and Preston (1995, p. 130) and create “caricatures” of groups to describe these
differences, where a caricature represents a composite description by combining information from all
12 groups.

Methods

Setting

In this paper, we present our findings regarding the types of interactions between 12 Fellows and
their Inquiry Group Members (IGMs) across a two-and-a-half year timeframe from May, 2014 to
November, 2016. The Fellows come from research institutions (Doctoral institutions with the
moderate, higher, and highest levels of research activity) and serve in a variety of positions
(Assistant, Associate Professor, and Full Professor as well as Lecturers). Next, each Fellow formed
their own inquiry group that included one to seven members from a variety of institutions and
geographic locations. The Fellows assembled inquiry groups for the purposes of developing
technology-mediated mathematics teacher education curriculum materials.

To develop these materials, the Fellows and their Inquiry Group Members had access to the tools
and capabilities within the LessonSketch platform (www.lessonsketch.org). LessonSketch provides
teacher educators with a suite of online tools for composing and interacting with multimedia
representations of practice. Depict offers users a drag-and-drop environment allowing users to easily
represent scenes from a classroom in the form of a storyboard. Annotate allows users to make time-
stamped comments on a variety of media files, such as video, audio, or storyboards. Plan offers users
a drag-and-drop environment for authoring agendas for interactive experiences for clients, integrating
multimedia tools for both producing and interacting with representations of practice with more
traditional course planning tools such as multiple choice and open-ended question generators. In
addition to those tools, LessonSketch also has accompanying capabilities for enabling users to
manage and study client interactions with the experiences. One such capability is the Experience
Manager that allows users to distribute online experiences to clients by either assigning the
experience directly to clients in LessonSkefch or by providing them with an access code or an email
link. The second capability, Reports, allows users to collect data about clients’ activities within such
experiences, including both user contributions (such as responses to questions or pins on a video) and
behaviors (such as time spent on an activity).

For the first year of the project, the Fellows worked on drafting an instructional module(s) for
one of their own courses. The Fellows’ modules (like the Fellows’ teaching assignments) were
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varied, with some designed for pure mathematics coursework, others for mathematics methods
coursework, and still others for general education coursework. During the first year, the Fellows met
together with the project group for two face-to-face meetings and participated in monthly online
meetings across the year to check in with one another. During the second year of the project, the
Fellows recruited Inquiry Group Members to help implement and/or construct modules. During this
time the Inquiry Group Members met together with their Fellow and with the project team for face-
to-face for work sessions on three occasions and held their own meetings throughout the year (either
virtually or face-to-face on their own schedule). The Fellows continued to meet virtually, with one
another, every month.

Data Collection

We collected a variety of data to document the ways inquiry groups organized themselves to
collectively develop and/or enact curricular materials. For this research, we documented each group’s
work in several ways. During the year one face-to-face meetings, we observed the Fellows’
interactions with one another and the project staff, collecting audio recordings of whole group
discussions and taking field notes during their work sessions. During the year two face-to-face
meetings, we observed the Fellow’s interactions with the Inquiry Group Members and with project
staff, taking field notes about the ideas exchanged and the roles various group members were taking
on. Across both years, we conducted and recorded monthly interviews with Fellows using video
conferencing software, to support their progress. In the Fall of 2016, we surveyed Inquiry Group
Members using adapted versions of the Concerns Based Adoption Model (George, Hall, &
Stiegelbauer, 2006) and Team Climate (Anderson & West, 1998) Surveys. We used this survey to
investigate the group distinctions as well as some of our observations about differences in possible
group characteristics (state of the modules when the IGM joined the group, agency, similarity of
professional goals) more thoroughly. We used Inquiry Group Members’ responses to the survey to
verify the nature of each group’s activity (e.g., whether or not the primary activity and ways of
working—implementation, collective construction, or independent construction—we had observed
were compatible with the primary activity and ways of working the group members identified) as
well as to confirm some key characteristics that were difficult to fully perceive from observation
alone. Lastly, we collected system-use data to understand whether and how different groups used the
various tools and capabilities within the LessonSketch platform.

Data Analysis

To begin describing the inquiry group interactions in a systematic way, we analyzed the data
using Engestrom’s (1987) activity theory, and its related mediational triangle (Figure 1). Activity
theory was developed to model goal- (or object-) oriented behavior as activity systems, accounting
for the collective nature of human activities as interactions between distinct elements.

While all the inquiry groups could be described as comprising the same type of subjects
(mathematics teacher educators) working on behalf of the same type of community (fellow
mathematics teacher educators) for the same outcome (namely educating future or current
mathematics teachers), our observations of their activities suggested several important differences
across groups within the object, division of labor, rules, and tool components of the mediational
triangle. First, we noticed differences in “what” the inquiry groups were collectively focused on
doing together, that is a difference in the groups’ objects (or goals). Avowedly what they all had to
do related to an instructional module. Groups seemed to primarily be focused either on constructing
modules (either collectively or individually) or implementing a module created by the Fellow or
some other group member. Based on these differences, we categorized the groups’ activity systems
according to one of two objects: construction or implementation.
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Figure 1. Engestrom’s mediational triangle (Engestrom, 1987).

Second, while all of the groups with an implementation objective seemed to use the same division
of labor, namely the Fellow played the role of “curriculum writer” while the Inquiry Group Members
implemented that curriculum in their own settings, we noticed differences in how those groups with
construction objectives divided the labor. Some of those groups took on the task of constructing a
module(s) in such as way that the Fellow and the Inquiry Group Members worked together to
develop a single set of materials; other groups took on the work so that the Fellow played the role of
“lead innovator’—developing his or her materials first—and the Inquiry Group Members each
followed suit by patterning their own materials after the Fellow’s work, but not necessarily in ways
that would allow for the materials to be implemented together. Based on these differences in the
division of labor we categorized the construction groups into two different types: collective
construction or independent construction.

Third, we noticed some important broad similarities in the ways the tools mediated the work of
the Fellows and Inquiry Group Members. To begin, the Depict, Annotate, and Plan tools were
primarily used for their authoring capabilities. While the Plan tool was created for authoring
experiences, there are many other ways in which Depict and Annotate could be used. While the
Depict tool can be used to author content for experiences (e.g., develop storyboards for students to
interact with), it can also be used to provide feedback to students’ contributions (e.g., to provide a
visual interpretation of a student’s vague narrative account of a classroom event and ask whether it
happened in that way). Similarly, while the Annotate tool can be used to author content for
experiences (e.g., identify moments of a video for students to comment on), it can also be used to
provide feedback to students about their contributions within an experience. For the most part,
however, we observed the Fellows and their Inquiry Group Members using Depict and Annotate to
author module content. Thus, for the purposes of this work, we classified the use of Depict,
Annotate, and Plan as mediating primarily the authoring of modules; while the capabilities within
Experience Manager mediating the distribution of modules for review prior to implementation as
well as distribution of modules for implementation with students; and the capabilities of Report for
analyzing aspects of the module use.

Finally we noticed some important differences across groups in terms of the ways in which they
used the different capabilities (Authoring Modules, Review and Distribution Modules for
Implementation, and Aralyzing Module Use) in the LessonSketch system to mediate their collective
work. We suspected that there would be meaningful differences in the ways in which these groups
used the tools and capabilities to mediate their collective work, but since much of their tool usage
happened when we were not directly observing them we could not be certain which tools and
capabilities they were accessing without a closer examination of system data.
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Results and Discussion

In this section, we present our overall findings by developing caricatures or composites of the
Inquiry Groups’ work based on their group structure, the conditions that seemed to characterize the
group’s activity system, and the ways in which the tools and capabilities afforded by the
LessonSketch platform seemed to mediate that activity. By taking the inquiry group to represent the
unit of analysis, we emphasize that the caricatures do not reflect the work of individuals but the
larger activity system. The caricatures were created during the data analysis process as opposed to
being a priori to the analysis.

The categorization of the groups or subgroups as engaged in implementation, collective
construction, or independent construction activities came fairly easily from the observations as
described above. Our observations were confirmed in the survey responses from the Inquiry Group
Members. Those working in implementation groups describing their work primarily in terms of
using, piloting, or suggesting revisions to the module created by the Fellow and those in the
construction groups describing their work primarily in terms of building, designing, or creating
module(s). Inquiry Group Members engaged in independent construction activities indicated
relatively more concern about the personal consequences of the project including logistics and the
time involved in the activities of the project than those engaged in collective construction activities.
To represent these composites in more memorable ways, we use the metaphor of different ways of
having a dinner party: (1) Hosting; (2) Potluck; (3) Cooking Club.

Hosting. One way to organize a dinner party is for the host to prepare a single meal for the
guests. While customs may differ, this kind of organization usually calls for the bulk of the meal
preparation to take place prior to guests’ arrival. Similarly, those groups with an implementation
objective commenced after the Fellow had drafted a version of the module that was ready for
distribution and the primary focus of the group was to implement a common set of teacher education
modules. These groups tended to be large (~5 members) and the members held similar professional
goals, usually in the form of a common course or a common approach to teacher education. Coming
back to the metaphor of a host preparing a meal for guests, the host needs to consider ahead of time
the match between the dish prepared and the kinds of foods the guests are accustomed to eating. The
host could ensure this match by preparing a dish common enough to be palatable to all of the guests
or by selecting guests amenable to the kind of dish that will be served. We see evidence of the
Fellows in these groups using both strategies, both designing the module around common themes in
the field as well as identifying Inquiry Group Members according to similar perspectives on teacher
education. Once these groups gathered, their activities were highly structured, with the Fellow
providing the module, the Inquiry Group Members enacting it with their students and providing data
back to the group to inform the Fellow’s revision of the module. These clearly defined roles seemed
to come with fairly hierarchical structures that positioned the Inquiry Group Members to enact the
module without revisions, as to provide the cleanest data back to the Fellow. While some exceptions
were made, these negotiations happened privately between the Fellow and the individual Inquiry
Group Member. This kind of hierarchical structure guiding the division of labor is somewhat
unsurprising if one considers the metaphor of a host preparing a single meal for many guests.
Modifications to the meal just prior to the serving could be quite difficult for a host to accommodate
and such modifications could jeopardize the more primary activities of the evening, such as sharing a
meal together or gathering feedback about a dish. The kinds of comments Inquiry Group Members
made following implementation of a module were summative—focused tweaking small elements of
the module. Again, in light of the metaphor, this is perhaps unsurprising given the kinds of access
guests at a dinner party have to the actual production of the meal. The structure of this type of Group
could be observed in the use of the technological tools, the Fellows in these groups (compared with
Fellows from the other two groups), were the heaviest users of the review, distribution, and analysis
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tools; while their Inquiry Group Members (compared with Inquiry Group Members from the other
two composites), tended not to use many tools.

Potluck. A second way to organize a dinner party is for everyone to bring a single dish to share
with others at the host’s home and collectively the individual contributions make up the meal,
sometimes called a potluck. Those groups engaged in an independent construction activity,
commenced after the Fellow had drafted a version of the module and the focus of these groups’
activity was on both providing feedback on the Fellow’s modules and using the Fellow’s module as
inspiration for each member to make their own. These groups also tended to be large (~5 members)
and its members held different professional goals; some joining because the work might offer
research opportunities while other members joining to learn how to use technology to construct
materials for their own courses. Like the Pot/uck model for dinner parties, these groups handled their
collective work by dividing and conquering, with members carrying out their roles in fairly
disconnected ways, working parallel to or in tandem to one another’s efforts sometimes unaware of
the various work of other members. Unlike the Hosting model for organizing dinner parties, Potluck
models do not require a host to ensure that the prepared dishes match the kind of foods guests might
be interested in consuming. For one, a guest’s own dish can provide some assurance for such a
match, but also the wide variety of dishes to choose from ensures that guests will find something they
are amenable to eating. Similarly, the Fellows in these groups were not observed needing to make
any sort of accommodations or negotiations regarding implementation of modules, nor did the group
make any sort of official bid that any materials would be implemented, leaving it mostly up to the
Inquiry Group Members to decide what, if anything, they would like to try out in their own contexts.
That said, like the participants at a potluck who sometimes seek out recipes for particular dishes
brought by guests, Inquiry Group Members’ knowledge was seen to be a resource for offering ideas
for their own module and revisions for the Fellow’s module. Both the Fellows and their Inquiry
Group Members were the heaviest users of the authoring capabilities (when compared with their
counterparts across the other two groups).

Cooking Club. A third way to organize a dinner party is for guests and host to plan and cook a
meal together as with cooking clubs or progressive dinners. Distinct from the Hosting or Potluck
models for organizing a dinner party, the Cooking Club model for dinner party organization does not
require for the bulk of meal preparation to happen prior to commencing the activity. Instead, the host
takes on the responsibility to send invitations or perhaps make provisions for supplies for the meal;
and the guests for such events arrive with anticipation for taking part in the cooking. Similarly,
groups engaged in collective construction activities commenced at a time when the module was still
in the form of a vision and not yet drafted in any concrete way and the primary focus of the group
was to create a common set of teacher education modules. These groups tended to be smaller (1 to 3
members) and members held similar professional goals usually in the form of a common course or a
common approach to teacher education. Unlike the Hosting model for organizing dinner parties,
Cooking Club models do not place exclusive responsibility on the host for ensuring that the prepared
meal matches the kind of foods guests might be interested in consuming, because the decision on the
meal to be prepared is shared by the group. Similarly, the Fellows in these groups were not observed
needing to make any sort of accommodations or negotiations regarding the eventual implementation
of the collectively developed module. Perhaps like a Cooking Club that has been gathering for some
time, these groups’ exchanges were characterized by an insider language, where group members
seemed to have a shared understanding for the meaning and value of particular constructs (making it
sometimes difficult for an outsider, such as the researchers, to follow the conversations). This way of
using language seemed to, at least in some ways, make the Inquiry Group Members’ knowledge
readily accessible for use by the group to design and revise the materials. The activity of collectively
constructing modules seemed to promote the sharing of practical knowledge within these groups that
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would often times move fluidly between bursts of creation followed by more theoretical
conversations. We liken this kind of sharing of knowledge through collective action to the gathering
of individuals around a counter to collectively dice a meal’s ingredients and who may learn simply
by carrying out the practice of dicing near others who are also dicing, but might also stop to clarify
the distinctions between the practices of chopping, dicing, and mincing. The Fellows in these groups,
while not the highest users in any of the categories of authoring, reviewing, distributing, or
analyzing, these Fellows maintain fairly high uses across all capabilities; while their Inquiry Group
Members were the only frequent users of the reviewing capabilities (compared with Inquiry Group
Members from the other two composites), they were also users of all capabilities.

Significance of the Research

In the above findings, we presented three different caricatures representing the ways in which we
observed teacher educators organize themselves around the activity of constructing mathematics
teacher education curriculum materials. In the presentation of these three caricatures, we see two
important differences between the larger body of literature on curriculum use and this work. The first
difference stems from the fact that these groups were designing digital materials that can be easily
edited which is distinct from the more canonical use of curriculum in which materials are less
amenable to such edits. Related to this difference, we take as critical the finding regarding the ways
in which the digital tools seemed to mediate various kinds of activities related to the design and use
of online curriculum material. The second difference stems from the fact that these groups were
comprised of teacher educators, rather than K-12 teachers. Distinct from K-12 curriculum use, we
note that the “status” of curricular materials in this project is far from “fixed”. The mathematics
teacher educators featured worked closely (or perhaps they were themselves) with curriculum
writers. Related to this difference, we take as critical the finding that teacher educators not officially
“charged” with the writing of the materials (as was the case for the Inquiry Group Members) can be
positioned in very different ways within the work of developing and implementing curricular
materials for teacher education. Perhaps most importantly, we see this work as laying the
groundwork to begin asking questions about what each of these various models of activity affords to
the work of designing and implementing teacher education with digital curricular materials.

Endnote

" The work presented in this paper was supported by NSF grant DRL- 1316241 to D. Chazan. All opinions are
those of the authors and do not necessarily represent the views of the Foundation.
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This study examines the perceptions of the Standards for Mathematical Practice (SMPs) held by 34
middle school mathematics teachers (MSMTs) as evidenced by their interactions with seven lessons
drawn from thinking device (TD) and delivery mechanism (DM) curriculum types. MSMTs’
perceptions of the SMPs consistent with their wording in the Common Core State Standards for
Mathematics (CCSSM) included a flexible definition of precision beyond calculation. However,
MSMTs also possessed a number of perceptions of the SMPs that were at odds with the wording of
these standards in the CCSSM. For instance, they considered a curriculum resource’s imperative for
Students to use a tool to be an indication of SMP 5. MSMTs whose district-adopted curriculum was
categorized as TD had significantly less invalid SMP justifications than teachers using DM curricula
1(34) =241, p =.022.

Keywords: Curriculum, Standards, Middle School Education, Instructional Activities and Practices

The majority of students in the US are situated within educational systems linked to the Common
Core State Standards for Mathematics (CCSSM). As we enter the seventh year of CCSSM
implementation we find ourselves at an educational crossroads. These crossroads consist of reflecting
on what we have learned thus far with regard to CCSSM implementation and determining where we
need to go from here to realize these ambitious standards. CCSSM research has investigated the
standards themselves (Schmidt & Houang, 2012), examined elementary level mathematics
textbooks’ alignment to the CCSSM, ascertained teachers’ perceptions of the CCSSM (Davis et al.,
2014), and described ways that teachers make the Standards for Mathematical Practice (SMPs)
explicit to students during classroom instruction (Selling, 2016).

Opfer, Kaufman, and Thomas (2016) investigated the perceptions of a nationally representative
sample of K-12 public school teachers in the US and found that teachers reported spending less time
on SMP 7 (structure) or SMP 3 (constructing arguments) than other SMPs. In contrast, other research
(Davis et al., under review) suggests that teachers consider the SMPs to be components of each
lesson that they construct. Opfer and colleagues also found that teachers at the elementary level were
more likely to misunderstand SMP 4 (modeling) than secondary teachers. Heck and colleagues
(2011) noted that a group of mathematics educators and policy researchers they surveyed were
concerned about the separation of the SMPs from content in the CCSSM as well as a lack of clear
descriptions of what a trajectory in learning SMPs might look like across grades. An important
component that is missing from this research involving teachers’ perceptions of the CCSSM is the
mediating presence of their district-adopted curricular resources. Mathematics teachers frequently
use textbooks (Banilower et al., 2013) and other research that we have completed as part of our larger
study suggests that teachers interpret textbook materials vis-a-vis the CCSSM (Roth McDuffie et al.,
2017). Given this setting, we were especially interested in the perceptions of teachers using different
types of curricula as textbooks that have been referred to as standards-based were created from
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documents that contained processes similar to the SMP. Hence, this study was designed to answer
two research questions.

1. What perceptions do a group of middle school mathematics teachers (MSMTs) hold with
regard to the SMPs as revealed through their work with two types of curricular resources?
2. How do the SMP perceptions of a group of MSMTs differ by district-adopted curriculum

type?
Frameworks

Teachers’ Interactions with Curricular Resources

We take the perspective that teachers’ curriculum use involves what Remillard (2005) describes
as participation with the textbook. That is, we consider teachers to be active interpreters of their
curricular resources. Moreover, we consider these interpretations to be governed by teachers’
personal resources (e.g., beliefs), the contexts in which they work, orientation, professional identity,
students, and curriculum (Stein, Remillard, & Smith, 2007). Additionally, teachers themselves are
transformed by their work with curricular resources (Remillard). We situate teachers’ work with their
curricular resources within Stein and colleagues temporal phases of curriculum use. In particular we
use their terminology intended curriculum to denote the lesson plans that teachers create from their
curricular resources or written curriculum. We consider curricular resources to encompass all of the
materials associated with a program (e.g., assessment resources) in print or digital forms.

Types of Curriculum Programs

In earlier work (Choppin, McDuffie, Drake, & Davis, 2015) we conceptualized curricular
resources based upon monologic and dialogic communication functions. Curricula were categorized
as following a delivery mechanism (DM) if they serve a monologic function where content is viewed
from the perspective of an expert and delivered to novices. Curricula were categorized as thinking
device (TD) if they serve a dialogic function where the goal involves soliciting the thinking of
novices and using this knowledge to move novices towards more complex thinking levels. We use
the terminology 7D teachers and DM teachers to denote teachers whose districts have adopted TD
curricula types and DM curricula types, respectively, and we place the curriculum type after the
teacher’s pseudonym in the results section.

Methods

This study is a component of a larger study examining how MSMTs interact with their curricular
resources in the context of the CCSSM. This component of the larger study used staged lesson plans
(SLPs) to reveal MSMTSs’ interactions with their curricular resources vis-a-vis the CCSSM. In an
SLP, teachers who have used one type of curricular resource for at least one year were given one
week to create an intended curriculum from a different type of curricular resource. The SLP was
designed to reveal how MSMTs used their district-adopted curricular resources by asking them to
plan from a different type of curriculum resource. During the SLPs MSMTs were asked a series of
questions involving the CCSSM content standards and SMPs, the SLP curricular resources as well as
the district-adopted curricular resources, and the intended curriculum. Participants were purposefully
drawn from school districts that had adopted both TD and DM curricula in print and digital forms
from both rural and urban middle school settings. A total of 62 different MSMTs working in four
different CCSSM states completed 75 SLPs in two waves during the 2013-2014 and 2014-2015
school years. In the initial wave of SLPs, MSMTs were asked to create an intended curriculum from
a SLP curriculum resource that was of a different type than the district-adopted curricular resource.
In the second wave of SLPs, a selection of MSMTs was asked to create an intended curriculum from
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three different lessons from a TD curriculum (described in more detail below). All teachers were
asked which SMPs were addressed in the respective intended curricula that they created from these
curricular resources. However, only 34 of these teachers were asked specifically to point out in their
intended or written curricula where SMPs occurred. The 37 SLPs completed by these teachers form
the data set at the center of this study. A total of 21 and 13 MSMTs had been using a DM and TD
curriculum for at least one year, respectively.

SLP Curricular Resources

The curricular resources used in the SLPs were drawn from three different curriculum resources,
two of which were considered to be TD, and one DM. The two categorized as TD were Connected
Mathematics 3 (CM) (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2014) and College Preparatory
Mathematics (CPM) (Kysh, Dietiker, Sallee, Hamada, & Hoey, 2013). The DM curriculum was
Glencoe Mathematics (Glencoe) (Carter, Cuevas, Day, & Malloy, 2013). MSMTs who taught grades
6 were provided with a lesson involving proportional reasoning: (Glencoe — P) (Carter et al., 2013,
pgs. 14-27); (CM — P) (Lappan et al., 2014, pgs. 18-23); Core Connections: Course 1 (CPM1) (Kysh,
Dietiker, Sallee, Hamada, & Hoey, 2013a, pgs. 224-227); or Connections Course 2 (CPM2) (Kysh,
Dietiker, Sallee, Hamada, & Hoey, 2013b, pgs. 743-745). MSMT who taught grade 8 were provided
with a lesson involving linear functions (Glencoe — LF) (Carter et al., 2013, pgs. 267-277); (CM —
LF) (Lappan et al., 2014, pgs. 5-11); or Core Connections Course 3 (CPM3) (Kysh, Dietiker, Sallee,
Hamada, & Hoey, 2013c, pgs. 308-311). We chose roughly equal numbers of grade 7 teachers to
work with proportional reasoning and linear functions lessons. For each SLP curricular resource,
MSMTs were provided with the student textbook, lesson planning resources, unit planning resources,
assessment resources, and a copy of the CCSSM. The number of MSMTs working with each SLP
curriculum resource by district-adopted curriculum type appears in Table 1.

Table 1: Participants by Curriculum Type and SLP Curriculum Resource

District-Adopted Curriculum Resource
SLP Curriculum Resource DM TD
Glencoe — P - 3
Glencoe — LF - 5
CM-P 9 —
CM-LF 11 —
CPM1 2 _
CPM2 - 4
CPM3 1 2
Analysis

The data in this study were analyzed through iterative cycles (Miles, Huberman, & Saldaiia,
2014). In an initial cycle of analysis we coded data with a variety of broad codes connected to a
larger project. In this study, we focused on data coded as 01-MP (mathematical practices), 0-Curric
(descriptions of intended curricula or written curricula), and 04-Adapting (adaptations made to the
written curricula). Data coded as 01-MP were subsequently coded for each of the SMPs based upon a
word or words associated with that SMP. For example, the word persevere led us to categorize these
data as SMP 1. Interview excerpts including language that was ambiguous (e.g., explore) or
potentially could pertain to more than one of the SMPs (e.g., explain) was excluded from analysis.
Next, a combination of in-vivo and descriptive coding was used on data associated with each SMP.
Last, we examined the codes within each SMP for themes shedding light on MSMTSs’ perceptions.
We determined the validity of each MSMT’s justification for the presence of a SMP in the curricular
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resources or intended curriculum by comparing the teacher’s justification to the written description
for each of the SMPs in the CCSSM using techniques similar to Opfer and colleagues (2016) as well
as our own previous work (Davis et al., under review) in excerpts coded as 0-Curric. Data coded as
04-Adapting were used to better understand the adaptations made with respect to the SMPs. Our
analyses of the written description of the SMPs in the CCSSM led to the identification of SMP 1 and
SMP 3 in both the CM — P and CM — LF SLP materials and we calculated the percentage of DM
teachers who identified these SMPs in these materials. As the number of invalid SMP justifications
made by the 34 teachers in our study met the assumptions of an independent samples #-test we used a
two-tailed test to examine the significance of the differences in invalid justifications between TD and
DM teachers with an alpha level of .05. Additionally, we calculated the percentage of valid SMPs out
of the total SMPs noted for DM and TD teachers.

Results

SMP Perceptions of MSMTs Regardless of Curriculum Type

A common theme running through the majority of MSMTs’ responses in the first SMP was
multiple approaches. MSMTs perceived that both perseverance and sense making required multiple
approaches. Additionally, the majority of teachers noted that problems that required students to make
sense of them and preserve in solving them were complex in some way. As Davidson (TD) put it in
her SLP, “If they’re going to persevere in solving something, it better be something that is going to
challenge their thinking in some way.”

Only six teachers (all DM) mentioned that their SLP curricular resources contained components
of SMP 2. A common theme among responses with regard to this SMP was real-world contexts. That
is, some teachers stated that for this SMP to be present students needed to consider the mathematics
embedded in a real-world situation. Contextualization and decontextualization were both mentioned
by MSMTs in reference to SMP 2.

For many MSMTs, SMP 3 embodied the development of arguments and the careful examination
of the arguments produced by others. Instead of arguments, however, MSMTs often stated that
students would “discuss,” “share,” or come to a “consensus” about different ways to solve a problem
such as determining which mixture was “most orangey” in the CM — P lesson.

Three of the SLP curricular resources (Glencoe — LF, CM — LF, and CPM3) specifically directed
students to create tables, graphs, and equations for a variety of real-world contexts involving linear
functions. An example of one set of questions from CM — LF appears below.

A. 1. Make a table showing the distance walked by each student for the first ten seconds.
How does the walking rate affect the data?
2. Graph the time and distance on the same coordinate axes. Use a different color for
each student’s data. How does the walking rate affect the graph?
3. Write an equation that gives the relationship between the time ¢ and the distance d
walked for each student. How is the walking rate represented in the equation?
(Lappan et al., 2014, pgs. 6-7).
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MSMTs considered questions in the textbook lessons such as the one above to be instances of
SMP 4. Christiansen (DM) justified the presence of mathematical modeling in the set of questions
above in the following way: “They’re making a table as a model. They’re making a graph to model
the situation. They’re also going to be asked to write an equation for each situation. That would be a
type of model.”

None of the MSMT discussed other aspects of modeling such as moving from the mathematical
model back to the real-world context or the assumptions that needed to be made in creating the
mathematical model for some real-world situation. For Dietrich (DM) and other MSMTs the
presence of what they deemed to be a real-world situation was a necessary and sufficient condition
for SMP 4 to occur in the lesson.

Consider the problem appearing in the CPM1 (p. 226) curricular resource.

With your team, you will use the percent ruler 0 . 4'0
. . P 1 l } 1 1 1 1
shown at right to examine a sample of 40 raisins 1t
and peanuts. 0% 50% 100%

Copy the percent ruler onto your paper.

Then use it to determine how many raisins

would make 50% of the sample. How many

raisins are in 10% of the sample? (Kysh et al., 2013a, p. 226).

MSMTs in our study felt that imperatives asking students to use such tools in the curricular
resources was evidence that students were gaining proficiency with SMP 5 as seen in Tyler’s (DM)
statement: “You have to use appropriate tools strategically in this one because you’re working with a
percent ruler.” Other teachers pointed to the use of tools such as graphing calculators to check their
work in creating the graph by hand. Thus, for these teachers they considered such tools as being used
strategically by students. Other teachers considered the open-ended use of tools to be a prerequisite
for the presence of SMP 5 in curricular resources.

Despite previous research suggesting that many teachers feel that SMP 6 appears in each
mathematics lesson they prepare (Davis et al., under review) only 15 out of 34 MSMTs listed SMP 6
as appearing in the SLP curricular resources they were given or their intended curricula. Altogether
MSMTs’ mentioned precision with regard to communication, accuracy, measurements, labels,
reading/creating graphs, calculations, and gathering data.

Several MSMTs described the presence of SMP 7 in their SLP curricular resources. For instance,
Dietrich (DM) wanted to draw students’ attentions to the structure of percent being compared to 100
in the CPM1 lesson. Similar to the CCSSM architects, MSMTs connected structure with pattern
identification (SMP 8). This is perhaps best seen in Christiansen’s (DM) examination of the CM — LF
curricular resource where she perceived the curricular resources as providing opportunities for
students to identify the structure of constant slope within a linear function as embodied in tables,
graphs, and equations.

SMP 8 expects students to look for and express regularity in repeated reasoning. MSMTs noted
that students would have opportunities to identify the y-intercept and slope of linear functions
appearing in tables, graphs, and equations either in the written or intended curriculum.

SMPs Perceptions by MSMTs’ District-Adopted Curriculum

We found that 63% of SMP justifications made by teachers using a DM curriculum type and 85%
of SMP justifications made by teachers using a TD curriculum type were valid. There was a
statistically significant difference in the number of invalid SMP justifications for TD and DM
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curriculum types #34) =2.41, p = .022. Regardless of curriculum type MSMTs struggled with
correctly justifying SMP 4 and SMP 5. For TD teachers these were the only two SMPs in which they
had incorrect justifications. In SMP 1, DM teachers only drew attention to making sense of problems
and not to perseverance. Several DM teachers confused complexity with abstraction in SMP 2. For
instance, one of the lessons (CM — P) asked students to determine which of four different orange
juice mixtures was most orangey and least orangey. Martin (DM) stated that this problem involved
SMP 2 and justified the practice in this way, “For number two, with reasoning abstractly and
quantitatively, now we’re getting into, are they going to think outside the box on certain things as far
as ‘How am I going to get to what’s most orangey or least orangey?’” Interestingly, none of the TD
teachers identified SMP 2 in the SLP curricular resources. In SMP 3, DM teachers described
checking answers for correctness as an engagement in the development of an argument. Both TD and
DM teachers incorrectly justified SMP 4. TD teachers focused on the presence of multiple
representations of a function (e.g., graph), but did not connect these to real-world contexts. DM
teachers’ incorrect justifications in SMP 4 involve the presence of multiple representations or a real-
world context. DM and TD teachers both incorrectly asserted that the presence of tools such as a
table was evidence of SMP 5. In SMP 6, one DM teacher (Shaw) stated that when students were
learning a new method for solving a problem, students did not need to be precise in their work. In
SMP 7 and 8 there was not sufficient detail to determine the validity of the justifications of the same
two DM teachers (Cartwright and Tyler). Additionally, only 45% of the DM teachers identified SMP
1 and only 35% of DM teachers identified SMP 3 across the CM — P and CM — LF lessons.

A total of eight TD MSMTs were engaged in an SLP for the Glencoe — P or Glencoe — LF
lessons. In all of these cases, the teachers saw no indication of the SMPs in the lessons. Granville
(TD) summed up her evaluation of the Glencoe — P materials in the following way, “I mean what
they say is that the aspects of mathematical thinking, practices 1, 3, and 4 are emphasized in every
lesson. I just had a really hard time imagining the way this seemed to play out that they were doing
any kind of engaging in any of the practices.” Consequently, all eight of the teachers made
significant adaptations to their DM curricular resources. The eight TD teachers began their intended
curricula by taking problems from the DM curricular resource that were presented as being solved in
one way (e.g., table) and providing them to students without an expected solution method. They felt
that without presenting a particular method, these problems better embodied SMP 1 as they were less
leading, more investigative and would be complex for students to solve. These TD teachers also
provided students with a variety of different tools for students to use to solve these problems, which
they felt was better connected to SMP 5 due to the fact that students had to choose which tool they
would use to solve the problem. Another common theme in the intended curricula among these
teachers was the use of cooperative groups whereby students would be expected to solve the
problems together and engage in argumentation as they justified their solution methods, thereby
engaging in SMP 3.

Discussion and Implications

This study examined a group of MSMTSs’ perceptions of the eight SMPs as well as how those
perceptions differ by MSMTs’ district-adopted curriculum type. On the one hand, our findings
suggest that the MSMTs we sampled are able to correctly identify SMPs 1, 2,3,6,7,and 8 in a
variety of curricular resources or their intended curricula. On the other hand, MSMTs’ perceptions
about SMPs 4 and 5 were problematic. Teachers using both DM and TD curriculum types did not
identify the connection between a real-world context and the mathematical representation or the need
to translate from the mathematical representation back to the real-world context. They also did not
mention other aspects of modeling such as determining what aspects of the real-world situation
should be included in the model and which should be discarded. The MSMTs we interviewed tended
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to focus on just one action associated with modeling. In SMP 5, MSMTs considered the mere
presence of a tool such as a percent ruler to be sufficient for students to gain proficiency with this
practice. That is, they were concerned less about what tools were appropriate for a given situation
and what it meant to use those tools strategically.

We assert that MSMTs’ difficulties with SMP 4 and 5 are connected to the issue of learning
trajectories involving these practices. It is not only important to determine what a particular SMP
looks like at a particular grade level (Heck et al., 2011), it is important to understand what types of
knowledge and skills comprise an SMP, when those should best be taught, how those skills are
sequenced, and what curricular resources embodying these activities look like. For example, we
would expect that an initial step in developing competency in SMP 5 would involve understanding
how to use particular tools. However, as several MSMTs in our study noted in their intended
curricula, students need to be asked to complete tasks where they must choose which tool is best
suited for the task and justify that use of tools. As we stand at these CCSSM educational crossroads,
an important next step in supporting teachers in bringing these standards to life involves providing
professional development for teachers in these two SMPs, articulating a set of competencies
associated with these skills, and developing curricular resources that embody these skills set within a
reasoned trajectory.

We found that the DM teachers in our sample were less successful in identifying SMPs in their
curricular resources or their intended curricula than the TD teachers we interviewed. This suggests
that the understanding of SMPs exhibited by the DM teachers in our sample is different from the
understanding of the SMPs held by TD teachers we interviewed. Consequently, we would expect that
DM teachers’ classrooms would provide fewer opportunities for students to engage in the SMPs for
two reasons. First, DM teachers may experience difficulty in ascertaining when these practices occur
in their curricular resources. Second, as the TD teachers demonstrated when they engaged with DM
curricular resources, these materials may simply not provide students with many opportunities to
engage in the SMPs.

TD teachers engaged in SLPs involving DM curricular resources demonstrated that invigorating
these materials with SMPs is not an easy task. In the eight cases where TD teachers were engaged in
this work, their intended curricula bore only a slight resemblance to the DM curricular resources
from which they were drawn. If educational policy advocates wish to take the development of
students’ SMP proficiency seriously or as the CCSSM implores, connect content to the SMPs, our
study suggests that not all types of curricular resources are created equal. Indeed, bringing the SMPs
to life in the classroom may require that we seriously consider the adoption of TD curriculum
resources and the concomitant professional development they require as we reflect on our location at
the CCSSM crossroads and where we go from here.
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As part of a larger study, we report findings on teachers’ use of the Common Core State Standards
for Mathematics (CCSSM) and teacher resources (TR) that were included with teachers’ published
curriculum programs. We analyzed 147 lesson planning interviews with 20 middle school teachers to
understand how teachers interpreted and enacted the CCSSM while working with their curriculum
materials. We investigated teachers’ noticing of CCSSM and features of TR in planning lessons.
Regardless of curriculum, teachers perceived that the lessons were designed to address the CCSSM.
Findings for patterns among curriculum type, teacher orvientation, and teachers’ noticing are
presented. Implications for curricular policy and design are discussed.

Keywords: Curriculum, Curriculum Analysis, Instructional Activities and Practices, Middle School
Education.

The purpose of this study was to explore patterns related to teachers’ orientations to instruction
(Remillard & Bryans, 2004), teachers’ uses of district-adopted curriculum programs (i.e., the
designated curriculum [Remillard & Heck, 2014]), and specific curricular features teachers noticed
(Jacobs et al. 2010, 2011) as they used teacher resources to plan lessons (i.e., the intended
curriculum). These lessons — and the designated curriculum — were ostensibly aligned with the
Common Core State Standards for Mathematics (CCSSM) (i.e., the official curriculum) (Remillard &
Heck, 2014). The CCSSM (CCSSI, 2010) were initially adopted by 45 states plus the District of
Columbia, and, despite a rollback in some states, the CCSSM or CCSSM-based standards are still in
place in most states. Thus, the CCSSM-adopting states share a relatively common articulation of
content and the progression of content across the grades. This provides researchers an opportunity to
consider how districts and teachers interpret standards and to understand the role of curriculum
materials in the process of enacting those standards.

When asked to compare the CCSSM with prior standards, teachers interpreted the CCSSM as
requiring a greater emphasis on problem solving, discovery, communication, and conceptually-driven
instruction (Roth McDulffie et al., 2015). Although teachers expressed a relatively strong view of
these CCSSM features, prior research on teachers’ enactments of similar recommendations in the
National Council of Teachers of Mathematics Standards documents (NCTM 1989) showed that even
reform-minded teachers did not tend to implement the recommendations beyond superficial features
(Coburn et al., 2016; Spillane & Zeuli, 1999).

Framework
Our framework draws on three complementary perspectives: orientations toward teaching and
learning mathematics, teachers’ professional noticing, and types of curriculum programs. Each
perspective is described briefly below (also see Roth McDuffie et al., 2017).
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Orientations toward Teaching and Learning Mathematics

We see teachers as designers as they work with and enact curriculum across a range of
classrooms contexts (Brown, 2009; Remillard & Heck, 2014). Productive enactments and adaptations
of curriculum materials, desired outcomes of the design process, are responsive to local contexts and
involve teachers noticing students’ mathematical thinking in relation to curriculum resources
(Choppin, 2011). However, most adaptations of high cognitive demand tasks cause the cognitive
demand to decline to procedural routines (Stein et al., 1996). Thus, how teachers use materials can
limit learning opportunities for students; however, others have pointed as well to curriculum
materials as limiting factors (Stein et al., 1996). Thus, which curriculum materials are designated for
use and sow teachers enact materials can both affect student learning and achievement (Stein et al.,
2007; Tarr et al., 2008). In regard to teachers’ use of materials, teachers’ orientations toward
curriculum materials influence how the materials are enacted (Remillard & Bryans, 2004). Remillard
and Bryans describe teachers’ orientation toward curriculum materials and its relationship to
learning as,

A set of perspectives and dispositions about mathematics, teaching, learning, and curriculum that
together influence how a teacher engages and interacts with a particular set of curriculum
materials and consequently the curriculum enacted in the classroom and the subsequent
opportunities for student and teacher learning. (p. 364)

To classify teachers’ orientations, we turned to Munter, Stein, and Smith’s (2015) two
instructional models of instruction, dialogic and direct. Munter and colleagues’ characterizations of
primary instructional patterns in US mathematics classrooms represent a consensus view from a
group of expert stakeholders, and they describe nine characteristics associated with each model.
Dialogic instruction entails teachers providing students with opportunities to: wrestle with big ideas,
assert and justify claims, and engage in carefully designed, high cognitive demand tasks (cf., Stein et
al. 1996). Teachers engage in practices including orchestrating rich class discussions, introducing
representations that can be used repeatedly in different situations, and sequencing activities in ways
that position students as autonomous learners (Munter et al., 2015). Dialogic instruction is consistent
with visions for effective teaching and learning espoused by NCTM (NCTM, 2014) and seminal
research in mathematics education (e.g., NRC, 2005; Stein et al., 2007). Although both dialogic and
direct instruction reflect a commitment to students’ understanding of mathematics, direct instruction
aligns with an acquisition approach (Sfard, 1998). Teachers maintain primary intellectual authority
(along with the textbook) by: presenting an objective for a lesson, demonstrating how to complete
problems, scaffolding students’ practice, and evaluating to correct students. To engage students,
teachers maintain a brisk pace, invite unison responses, and praise correct responses (Munter et al.,
2015).

Given that meaningful and authentic problem solving, sense-making, and explaining and
justifying solutions are emphasized in the CCSSM’s Standards for Mathematical Practice (MPs),
then it seems that the CCSSM align with a dialogic model. Yet, the CCSSM are ambivalent on
pedagogical approaches (McCallum, 2012). On one hand, the MPs align with the characteristics and
goals of dialogic instruction; on the other hand, due to the major gaps in empirically developed
learning trajectories in key middle grade topics (Daro, Mosher, & Corcoran, 2011), the middle grade
content standards are based on the logic of the discipline as much as they are framed by
developmental and reasoning-focused approaches. Thus, the CCSSM leave room for teachers to
attend to, interpret, and enact the content standards and MPs in various ways.

In contextualizing research on teaching in a broader system, we turned to Remillard and Heck’s
(2014) model describing a system for curriculum policy, design, and enactment, as described above,
with a focus on: official curriculum (e.g., CCSSM and/or other policy documents); the designated
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curriculum (plans and curriculum materials authorized by local educational authorities) and teacher-
intended curriculum (interpretations and decisions in planning). We considered how teachers used
and worked between the CCSSM as an official curriculum and their designated curriculum to
develop teacher-intended curriculum.

Teacher Noticing in Teaching and Learning Mathematics

An emerging body of research on mathematics teachers’ noticing supported us in studying how
teachers construct an intended curriculum and then enact curriculum (Jacobs et al., 2010, 2011;
Mason, 2011). Although researchers have framed noticing in slightly different ways, a commonality
is that noticing involves not only the attention that teachers give to classroom actions and
interactions, but also teachers’ reflections, reasoning, decisions and actions. Jacobs and colleagues
defined professional noticing of children’s mathematics thinking as consisting of a set of three
interrelated skills: attending, interpreting, and deciding how to respond (Jacobs et al., 2010, 2011).
Jacobs and colleagues argued that deciding to respond should be included as part of noticing because
it is linked to the other skills of professional noticing (attending and interpreting) “during teachers’
in-the-moment decision making.” Jacobs and colleagues (2011) view the three skills of attending,
interpreting, and deciding to respond as “inextricably intertwined” (p. 99), and we share this view. In
forming our analytical framework to investigate teachers’ work with curriculum, we adapted research
on teacher noticing (Jacobs et al., 2010, 2011) to include curriculum as an object of noticing. Other
researchers independently have begun to use a framing of curricular noticing in studying prospective
teachers as they learn to work with curriculum materials (c.f., Males et al., 2015).

Types of Curricular Programs

We conceptualize curricula according to monologic and dialogic communication functions
(Wertsch & Toma, 1995). We characterize curriculum programs as delivery mechanism (DM), if they
are designed from the monologic function, in that the content is developed from the perspective of
expert performance, to be delivered to novices. In contrast, Thinking Device (TD) curriculum
programs emphasize the dialogic function so that the primary goal is to elicit student thinking and to
provoke interactions that generate understanding. In previous work for the larger study, the
curriculum programs used by the participating teachers were analyzed and classified according to
these two types (Choppin et al., 2016). The above perspectives framed the study and served as the
foundation for our analytic frameworks, as described in the next section.

Methods

From our larger data set, we purposefully selected 20 teachers using four different curriculum
programs, with two TD programs and two DM programs. We applied qualitative methods of analytic
induction and constant comparison (Bogdan & Biklen, 2007; Miles, Huberman, & Saldafia, 2014) to
identify patterns and themes regarding teachers’ use of the CCSSM and the teacher resources (TR)
that are provided in teachers’ designated curriculum materials in planning lessons. The research
questions driving the study were: (1) In planning lessons, what do teachers notice in CCSSM and in
TR?; and (2) How do types of curriculum materials and teachers’ orientations relate to teachers’
noticing during planning?

Data Sources

From our larger project data, we selected four districts with curriculum programs of different
types. From these districts, we selected 20 teachers who participated for at least one year, so that we
had a representation of each of the middle grades (grades 6 to 8) and teaching experience (from first-
year to over 20 years). All participating districts and teachers stated that they were implementing the
CCSSM in their instruction. Data sources included 147 interviews: pre- and post-lesson interviews
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that focused on teachers’ planning with their designated TR, and interviews as teachers planned a
lesson with materials that were different from their designated curriculum (using contrasting
resources). We collected data over three academic years from Fall 2012 (start of Year 1) to Spring
2015 (end of Year 3), and districts participated in either two or three years of the project, with three
to four interviews conducted each year with each teacher participant (see Table 1). The classification
shown for each curriculum is based on prior analysis (Choppin et al., 2016).

Table 1: Teachers, Designated Curricula, and Curriculum Type

District | Teachers (with # of Interviews per Designated Curriculum Program | Curriculum
Teacher) (by Year of Study) Type
Anna Anderson (6), Cartwright (3), Digits (Fennell, 2010) (Y2, Y3) DM
Dietrich (7), Martin (3), Shaw (6)
Chester | Allen (9), Granville (6), Menard (7), | Connect Mathematics Project TD
Pless (11) (CMP, Lappan et al., 2014),
CMP2 (Y1), CMP3 (Y2,Y3)
Denton | Amedon (4), Blackburn (12), Glencoe (Carter et al., 2013) (Y1, DM (Y1,
Gagnon (10), Gates (9), Hastings Y2), CMP3 (Y3) Y2)
(7), Leonard (12), Sprague (6) TD (Y3)
Sanders | Boris (8), Gryder (6), Pearle (8), CPM Mathematics (Kysh et al., TD
Ross (7) 2013),(Y2,Y3)
Data Analysis

We analyzed data through iterative cycles (Miles, Huberman, & Saldafia, 2014). Initially, using
qualitative data analysis software, we coded data with a set of broad codes related to the larger
project. For this study, we focused on data coded as “teacher resources” and “planning.” We then ran
reports to gather all data with these codes for the 20 teachers. We conducted finer level coding of
these reports for instances of: (1) evidence of dialogic or direct orientations, applying Munter et al.’s
(2014) nine characteristics; and (2) curricular noticing of the CCSSM (e.g., content standards,
mathematical practices) and features of the TR (e.g., lesson structure, suggested questions, example
problems, student approaches). We generated analytic memos for the participants to describe patterns
and conjectures and compile data associated with these patterns. To examine patterns across
participants, we created a matrix with rows for each participant and columns for foci of noticing and
orientations, as described in the codes above. Within each cell we recorded findings for each teacher
and then examined patterns and differences by curriculum program and by curriculum type.

Results

We categorized teachers into one of four categories based on teachers’ designated materials and
orientations evidenced in planning (see Table 2). For a few teachers, identifying orientation was not
as clear as for most. For example, Pearle predominately demonstrated a dialogic orientation when she
explained that she focused on “big problems and not just your memorization or your simple
computation, like the math that I grew up [doing]” and on writing to support thinking. However,
Pearle planned to introduce new vocabulary by presenting it to students at the beginning of the lesson
(a direct orientation). In these cases, we classified based on the predominant orientation, with no
more than one characteristic aligning with the other orientation. Teachers’ orientations were
consistent in planning with both their designated materials and with the contrasting materials
provided in the interview. We identified two primary patterns for orientation and type of designated
materials: TD materials paired with dialogic orientations and DM materials paired with direct
orientations. That is, for 17 of the 20 teachers, their orientations aligned with the design of their
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designated curriculum materials. For the remaining three teachers (who demonstrated a direct
orientation and were using TD materials), they had previously used Glencoe (DM) and were in the
first year of using CMP3 (TD). Their comments and planning indicated that they noticed ways CMP3
was different from Glencoe, but they continued to remain at the center of the lesson, hold authority
for content, and prioritize procedures. For example, Gates stated, “I’'m ...struggling with [CMP
because] kids do not get to the standard algorithm...As I say to [my students], I need you to do 145
divided by 7 and just do it with the old standard [algorithm.]”

Table 2: Teachers Categorized by Orientation and Their Designated Curriculum

District Thinking Device Materials (TD) Delivery Mechanism Materials (DM)

Dialogic | Allen, Amedon, Boris, Granville, (0 Teachers)
Gryder, Leonard*, Menard, Pearle,
Pless, Sprague* (10 Teachers)

Direct Gagnon*, Gates*, Hastings* Anderson, Blackburn, Cartwright, Dietrich,
(3 Teachers) Gagnon*, Gates*, Hastings*, Leonard*,
Martin, Shaw, Sprague*

(11 Teachers)

*Note: Denton teachers changed from Glencoe to CMP during the study. Teachers marked with
an * appear in two categories, based on the materials they used that year.

Next, we analyzed patterns for curricular noticing in teachers’ planning with their designated TR
and with contrasting materials (see Table 3). Within each cell, italicized phrases are the topics of
noticing, and text that follows represents the primary and consistent themes for each form of
curricular noticing (i.e., how teachers attended, interpreted, and decided to respond) within that
category. As much as possible, we incorporated teachers’ phrasing and terms to represent the theme
(e.g., “big ideas”, “key questions”, “investigations”, “inquiry-based”, “talk through”, “key steps”). In
three of the four categories, teachers interpreted the TR as aligning with CCSSM; however, teachers
with a dialogic orientation interpreted DM materials as not addressing the CCSSM. These teachers
were planning with contrasting TR (Glencoe), rather than their designated TR (CMP3). Thus, all
teachers viewed their designated TR as aligned with CCSSM, and yet their interpretations and
decisions with the CCSSM and TR in lesson planning varied, as shown in the other cells.

As an example, Allen (dialogic orientation) evidenced her noticing of CMP3’s TR features and
planned to provide an initial, informal exposure to ratio as a way to develop understanding:

[I want students to] understand what the numbers are, what they’re there for, what they’re
being used as....Do they know [what each part of the ratio refers to]?....I always feel like the
[first] investigation, it’s really just that informal exposure....I think being able to recognize
different types of comparisons, what they might look like, how you might get them, I’'m just
kind of starting to set the stage for [understanding that] isn’t [just one] type of comparison.

In contrast, Gates (direct orientation) noticed Glencoe’s TR features by focusing on the steps she
planned to demonstrate and how students will practice these steps.

For example, 2+y=3, we all use the strategy of bringing down a railroad track and then doing
whatever you do to the side.... So I have a process where I usually have them do a few
problems with me,...and if I feel like they’re okay, I have them do a few problems with a
partner, and then if they’re doing well, ... I let [students work] independent[ly].
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Table 3: Noticing Patterns in Planning with Designated vs. Contrasting Curriculum

Teacher Curriculum Type
Orientation | Thinking Device Materials (TD) Delivery Mechanism Materials (DM)
Dialogic CCSSM and TR Alignment: Interpreted CCSSM and TR alignment: Interpreted
Teachers materials as aligned with CCSSM materials as not aligned with CCSSM
MPs: Attended to MPs in CCSSM and MPs: Attended to lack of focus on MPs,
decided to feature these through open interpreted as limiting students’
problems and investigations. opportunity to learn, and decided not to
not use or substantially adapt TR.
TR Feature, Problems and Homework: TR Feature, Problems and Homework:
Attended to and worked problems as Attended to problems and homework,
students might to anticipate their interpreted as focused on skills and as
thinking, strategies, and confusions not deep enough to induce reasoning,
(interpreting and deciding). Selected conjectures, and explaining. Decided to
problems to align with big and with MPs | adapt or replace or only use in limited
(interpreting and responding). ways for practice.
TR Feature, Lesson and Participation TR Feature, Lesson and Participation
Structures: Structures:
Attended to Launch-Explore-Summary Attended to the role the curriculum
(L-E-S) structure. For each phase materials and the teacher played in
considered key questions and approaches | presenting (“telling”’) students what
to engage students in productive steps to use to solve problems, with
struggle, communicating, and justifying | time for students to practice similar
(interpreted). Decided to launch the problems. Interpreted the heavy focus
lesson with key questions and contexts, on whole group and practice as limiting
how to use cooperative groups, and how | students’ development of
to facilitate a summary discussion. understandings and engagement in MPs.
Decided to substantially adapt or
replace approaches from TR.
Direct CCSSM and TR alignment: Interpreted CCSSM and TR alignment: Interpreted
Teachers materials as aligned with CCSSM materials as aligned with CCSSM

MPs: Attended to MPs, interpreted as
different from designated materials,
decided not to use the TR approaches
related to mathematical practices due to
perceived time needed and/or needing to
cover “basics” first.

MPs: If attended to CCSSM, attended to
content standards (not MPs), interpreted
as topics to be covered, and decided to
cover standards by following TR
(showing procedures and providing time
for practice).

TR Features Problems and Homework:
Attended to inquiry-based approaches,
interpreted as “overwhelming” for
planning and students, and decided
problems were beyond their students’
capabilities. Decided to adapt or replace
with practice problems.

TR Feature, Problems and Homework:
Attended to problem sets as a first-step
in planning, selected problems based to
match students’ current skills and to
practice new content (interpreting and
deciding).

TR Features, Lesson and Participation
Structures: Attended to the L-E-S

TR Features, Lesson and Participation
Structures: Attended to examples to
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structure. Interpreted that students need | model and problems to assign for

more direct instruction and practice, individual seatwork and/or homework.
viewed investigations as too challenging | Decided on examples, what to model,
for students and requiring too much time. | how to talk through the problem solving
Decided to scaffold and model problems | process, key steps to emphasize, and key

first and supplement to ensure that cautions to share. Decided on errors to
students had skills, procedures, and look for when students were practicing
practice needed before attempting problems and ways to correct or prevent
investigations. these errors.

Discussion and Implications

A growing body of evidence indicates that characteristics of curriculum impact teaching and
learning (e.g., Stein, Remillard, & Smith, 2007; Tarr et al., 2008). Indeed, we found that teachers’
orientations matched the type of curriculum they were using in most cases. For the three teachers
whose direct orientation was different from the approach of their TD materials, they attended to
differences in the curriculum approaches, but then discussed how they were “struggling” to plan
lessons as TR suggested, and often supplemented with practice problems from past DM resources.
This pattern and other findings above indicate that a TD curriculum can support teachers’ dialogic
orientations in planning and incorporating CCSSM (and especially the MPs). However, similar to
past reform efforts, the CCSSM and curriculum materials can be interpreted and enacted in multiple
ways (Coburn, Hill, & Spillane, 2016; Remillard, 2005; Spillane & Zueli, 1999). Teachers also might
attend to differences and then decide to plan based on their past practices or past materials. Teachers
need support (e.g., professional development, coaching) and time to enact TD lessons in ways that
are consistent with goals for dialogic instruction. This study is a next step in understanding specific
ways teachers notice and interact with different types of TR and with CCSSM. This can inform both
curriculum developers in designing curriculum and teacher educators in preparing teachers to enact
ambitious practices.
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Students studying geometry at the secondary level are expected to read diagrams in different ways
than those in elementary school. In this paper, we present an analysis of the changes in
diagrammatic expectations by comparing the geometric diagrams found in Grade 1 U.S. textbooks
with those in U.S. high school geometry textbooks. This work included developing and using a coding
scheme that recognizes dimensions of reading a diagram geometrically, including the type of object
represented, use of deduction, use of mental redrawing, interpretation of markings, and the necessity
of the diagram. The way in which elementary and secondary students are expected to interpret
diagrams was shown to change along several of these dimensions, posing potential learning barriers
for students. We end our paper with a discussion of what our results mean for the learning of
geometry.

Keywords: Curriculum, Geometry and Geometrical and Spatial Thinking, Elementary School
Education, High School Education

An identical task with the same geometric diagram can be found at different grade levels with
different expectations for interpreting the diagram (Dietiker & Brakoniecki, 2014). For example, in
elementary school, a diagram of a quadrilateral with 4 apparent right angles is supposed to be
identified as a rectangle, whereas in high school, the same diagram is expected to be interpreted as a
quadrilateral that is not necessarily a rectangle. How are students expected to read information from
geometric diagrams in mathematical tasks, specifically those found in textbooks? And how might
these expectations change? In a study of the expectations of textbooks with respect to how students
read geometric diagrams, Dietiker and Brakoniecki (2014) expand on Pimm’s (1995) notion of
reading geometrically and propose multiple dimensions of reading geometric diagrams. These
dimensions, gleaned from analyzing the geometric tasks in multiple elementary and secondary
textbooks (including traditional and reform curricula from multiple countries), represent distinct
aspects of geometric diagrams that students are expected to pay attention to and interpret as they
negotiate the meanings of mathematical tasks.

In this present paper, we report on our continuing analysis of textbooks to reveal how the
expectation of diagrammatic reading changes as students progress through school. In particular, we
compared the geometric diagrams found in Grade 1 U.S. textbooks with the diagrams of U.S. high
school geometry textbooks in order to learn how different the expectations are. This work included
developing and using a coding scheme that recognizes the dimensions of reading geometrically,
which are described in detail in this paper.

We end our paper with a discussion of what our results mean for the mathematical learning of
geometry. With evidence that students are expected to develop sophisticated ways to negotiate
meaning from diagrams, we argue that within each of these dimensions, educators can craft
opportunities for students to develop strategies for reading geometric diagrams to ease the transition
from elementary to secondary school.
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Framework

This study examines the mathematical content with regard to geometric diagrams within the
textbook curriculum. The textbook curriculum is specifically limited to comprehensive written
curricular materials that are published for use by teachers and students. Although the textbook
curriculum has an impact on curriculum as enacted in classrooms, this analysis is limited to the
content as it is interpreted by readers (i.e., the researchers) of the texts. For this study, problems
include all textbook prompts (whether interrogatives or not), such as tasks, activities, and questions
for which an expected response from a student is provided in the teacher edition, although withheld
from students. Thus, worked examples (i.e., tasks that are completely solved within the student text
materials) are not framed as problems.

An expectation of a problem is framed as a limiting condition with regard to a student’s response
of a question or task. For example, if an assumption from a diagram is necessary (such as interpreting
an unmarked angle in a geometric diagram as a right angle) to get the expected answer provided in
the textbook, then we argue that this assumption is a diagrammatic expectation. In any geometric
diagram, there are many potential assumptions that could be made. We limit our definition of
expectations to those that are required based on the given answers in the teacher textbook.

Methods

In order to learn how the expectations for reading geometric diagrams differ from elementary to
high school, the teacher and student materials from four U.S. textbook series were selected for
analysis, including two from first grade and two from high school. These grade levels were selected
in order to demonstrate the change in expectations of diagram interpretation that students experience.
The two elementary textbooks include the University of Illinois at Chicago’s Math Trailblazers
(2008, “MT”) and the University of Chicago’s Everyday Mathematics (2007, “EM”). Within these
textbooks, we considered diagrams in the problems in all chapters focused on geometry, including
topics such as shapes, volume, and symmetry. The two high school textbooks include the CME
Project Geometry (2009, “CME”) and Prentice Hall Mathematics Geometry (2004, “PH”). In these
textbooks, we analyzed all diagrams for problems and questions in Chapter 1 in order to learn about
the assumed expectations of geometric reading at the start of a formal geometry course in high
school. In all textbook portions that were analyzed, we eliminated from analysis any problems for
which the teacher edition listed an incorrect answer.

Due to the fact that the purpose of this work is to establish the expectations for how students
interact with diagrams, only the diagrams that are part of a student task were analyzed. This does not
include diagrams included in exposition or in worked examples, as students do not have to interpret
or make decisions about these diagrams. Additionally, because we did not have the assessment
materials for all four curricula, we restricted our analysis to lesson materials focused on learning new
content.

Methods of Analysis

To describe the reading expectations of the geometric diagrams, we developed five overarching
codes. The first describes how the reader is expected to interpret the diagram as something (e.g., a
real life object or a representation of a set of objects). When analyzing our interpretation of geometric
diagrams as something, we recognized multiple distinguishable characteristics that became sub-
codes. Some tasks included geometric diagrams that were meant to be interpreted as drawn (as
indicated in the task statement and answer). For example, a task that asks a reader to measure the
diagram to make statements about the geometric object is expecting this reader to interact with the
diagram as the geometric object under study. Another example is a task in which a student is
expected to indicate (by drawing) a line of symmetry for a geometric object depicted in a diagram.
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In analyzing those tasks that require a reader to interpret the geometric diagram as drawn, we
recognized that some require an assumption of either a metrical or topological relationship condition
by the reader. For these tasks, there is a positive consequence for making assumptions based on the
diagram, and having skepticism toward the diagram is disadvantageous. For example, in the task
shown in Figure 1, a reader needs to assume that points E, C, and B are collinear in order to get these
answers (displayed in pink) correct.

Figure 1. An example of As Drawn With Necessary Assumption from PH (2004, P. 31).

However, not all geometric diagrams are positioned by the text to be taken as drawn. Others are
positioned in such a way that they are representations of an abstract geometric object (or a set of
objects) and thus, a student is expected to not make assumptions of the geometric object based on the
diagram. In these cases, a reader may be expected to read the diagram as a representation of a
particular geometric abstraction when given a diagram that is not necessarily accurate. For example,
for the diagram in Figure 2, which accompanies a prompt for students to determine the largest
rectangle in the image, a reader would have a negative consequence if they assumed the angles of the
rectangular characters were as depicted (which are not drawn as right angles because of the 3D
orientation).

Figure 2. Example of Representing with Assumptions from MT (2008, p. 187).

Reading as representing also includes geometric diagrams that represent multiple geometric
objects (read as a generality). That is, in some tasks, a reader is expected to recognize that a
geometric diagram is a single representation of a multiplicity. Along with these, we note that some of
these require a reader to make at least one additional assumption. The geometric diagram in the task
in Figure 3 is an example of a diagram representing a multiplicity since a reader is expected to
interpret the diagram as one of many.
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Figure 3. Example of Representing as Multiple from CME (2009, p. 54).

Other tasks do not explicitly include what we commonly consider to be geometric diagrams, but
instead include an image of a real world object (such as the soda can in Figure 4) with the
expectation that it will be interpreted as a geometric object (i.e., a cylinder).

Figure 4. Example of Real World Object from EM (2007, p. 147).

Beyond the representations of geometric objects, we identified some geometric diagrams that are
not representations of geometric objects. Some of these contain information that renders a geometric
object as impossible or contradictory. For example, if a diagram of a triangle were marked with angle
measures that do not sum to 180°, we interpreted that diagram as a misrepresentation. In addition, we
coded geometric diagrams for which there is no expectation that a reader interprets the objects as
geometric as non-geometric. For example, in a pattern problem with a string of triangles and squares,
the students are not expected to interpret the objects as geometric. In fact, the use of the geometric
shapes could easily be replaced with diagrams of flowers and firetrucks with no effect on the task.

The sub-codes for distinguishing how an object in a problem is to be interpreted and their
interrelationships are represented in Figure 5.
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Figure 5. Diagram of sub-codes and their interrelationships for Interpreting as.

In addition to coding for the interpretation of the diagram, we coded four other dimensions of
reading geometrically: whether deductive reasoning from the diagram is required to solve the task,
whether the reader needs to mentally redraw the diagram to answer the task, whether the reader
needs to interpret conventional mathematical markings to solve the task (e.g., reading the labels for
the points in Figure 1), and whether reading the diagram is necessary to answer the task (e.g., the
diagram in Figure 3 is supplementary while that in Figure 1 is necessary to solve the task).

Using this coding scheme, the three researchers analyzed each diagram from the selected portions
of textbooks for the expectations of reading geometrically. These researchers include two
mathematics educators and one doctoral student, of which two have high school teaching experience
and one has extensive textbook design experience. Each code represents a consensus of all three
researchers.

We suspected that there was a relationship between the intended grade of the textbook
(elementary or secondary) and the various categories described above (the expected interpretation of
the geometric object, whether deduction was necessary, whether mental redrawing was necessary,
whether markings needed to be interpreted, and whether the diagram was necessary to the problem at
all). To test the grade level’s independence on each of these categories, we performed a Fisher’s
Exact Test (Fisher, 1922) between each grade level category and each of the above listed task
categories to test the hypothesis that each of these categories was independent of the grade level of
the textbook. Observed differences were statistically significant for p < 0.01.

Findings

The frequency of each type of diagrammatic expectation for textbooks of each grade level is
reflected in Table 1.

When comparing how the textbooks expect students to interpret as, there was a statistically
significant difference between the distribution of categories for elementary and high school texts
(p<0.001). This enables us to assume that there is some dependence between the grade level of the
textbook and the method of interpreting the diagram as an object. While the Fisher Exactness Tests
indicates a likely dependence between categories, it does not identify specifically where the
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dependence exists. Thus, what follows is a summary of the more striking differences found in our
coding results, highlighting where these differences likely exist.

Table 1: Frequency of Geometric Diagram Expectations

Task Elementary Secondary Fisher

Expectation Sub-Code (n=61) (n=156) Exact P

Interpreting as Real world as geometric object 5(8.2%) 10 (6.4%) 0.000*
Drawn 10 (16.4%) 51 (32.7%)
Drawn with assumption 36 (59.0%) 35 (22.4%)
Representation of single object 1 (1.7%) 4 (2.6%)
Representation of multiple 0 (0.0%) 45 (28.9%)
Representation with 1 (1.7%) 6 (3.9%)
assumption
Impossible/contradictory 0 (0.0%) 1 (0.6%)
Non-geometric 8 (13.1%) 4 (2.6%)

Using deduction Required 0 (0.0%) 7 (4.5%) 0.195
Not required 61 (100.0%) 149 (95.5%)

Mentally Required 0 (0.0%) 16 (10.3%) 0.007*

redrawing Not required 61 (100.0%) 140 (89.7%)

Interpreting Necessary 0 (0.0%) 81 (51.9%) 0.000*

conventional Supplementary 0 (0.0%) 26 (16.7%)

markings No markings 61 (100.0%) 49 (31.4%)

Reading the Necessary 59 (96.7%) 123 (78.9%)

diagram Supplementary 2 (3.3%) 33 (21.2%) 0.001*

Note. *Significant to p < .01.

Among the 61 diagrams of the elementary school textbooks and the 156 diagrams in the
secondary textbooks, the most commonly expected interpretation of elementary textbook diagrams
was as drawn with assumptions, with 59% of the diagrams in elementary. This means that a majority
of the diagrams in elementary textbooks require students to interact with the diagram as the
geometric object and that the student needs to make assumptions about measurements (such as a
perceived right angle or a relationship between lengths) or properties (such as whether sides are
parallel) based on how the diagram looks. Interestingly, high school textbooks also contain diagrams
with this expectation, although they occur less frequently (22.4%). Instead, the most common
expectation in the secondary diagrams is to interpret a diagram as drawn but without assumptions,
which occurs in 32.7% of that grade level’s diagrams, in contrast to 16.4%, as found in elementary
textbooks.

Another noticeable difference between the grade levels’ expected interpretations of diagrams was
found for diagrams that represent multiple objects. No elementary school problems required students
to interpret a diagram as a representation of multiple objects. In contrast, this was the second most
frequently expected interpretation of the secondary diagrams, required for 45 (28.9%) of them. This
suggests that high school texts expect students to know how to interpret a geometric object in a
diagram as a general (rather than particular) representation at the start of a formal geometry course.

The geometric diagrams that did not require the interpretation as a geometric object were more
found more often in elementary textbooks (13%) than secondary textbooks (3%). In addition,
although there were relatively few instances of interpreting a diagram as a single representation
overall, with only 5 diagrams in total, this occurred more often in the secondary textbooks (4).
Although we expected to find more instances of diagrams depicting real world objects as geometric
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objects in elementary textbooks, the frequency of these diagrams was surprisingly similar in both
grade levels (8.2% in elementary, compared to 6.4% in secondary).

Among the other categories of analysis, several also showed significant differences between
elementary and secondary problems. A statistically significant difference was found when
considering whether or not the diagrams needed to be mentally redrawn to solve the task (p<0.01). In
the elementary textbooks, this expectation was not found. However, of the diagrams in the secondary
textbooks, approximately 10% required a reader to visually manipulate a geometric object in order to
solve the problem. Examples of these problems included tasks that require students to visualize what
would happen to a geometry object if a vertex were dragged or how a diagram might change if a
particular edge varied in length.

Another statistically significant difference was found when we compared the need to interpret
markings of elementary diagrams versus those in high school diagrams (p<0.001). In the two
elementary school textbooks, not a single diagram included any markings (right angle, congruent
segment length, point name marking, etc.). This is in contrast to the high school textbooks’ diagrams,
of which almost two-thirds (68.6%) contain conventional markings. Of these, the majority required
the interpretation of markings to solve the task (75.7% of those with markings, or 51.9% of all
secondary diagrams). The remaining 16.7% of the secondary diagrams that contained conventional
markings included a text prompt that supplied the information conveyed by these markings,
rendering the markings in the diagram supplementary.

Lastly, we found a statistically significant difference (p<0.001) between the grade levels as to
whether a student is expected to read a diagram. The diagrams in the elementary textbooks were
almost always necessary to solve the task (96.7% of the time), in contrast to the high school texts
which more frequently included diagrams that were supplementary to the task (21.2% of the time).

In contrast to the statistical differences described above, there was not a significant difference
between the elementary and secondary diagrams regarding using deduction to solve a problem based
on a diagram. None of the diagrams in the elementary textbooks require deduction and less than 5%
of the diagrams in the high school tasks do so. In the elementary texts and opening chapters of the
high school texts, it is almost never necessary for students to deduce a piece of information about a
diagram which then needs to be used to learn additional information about that same geometric
object.

Discussion and Implications

In this paper, we provide evidence that at some point in the transition from elementary school to
the beginning of high school, there is a shift in expectations of how students are expected to read
diagrams. As they start school, students are typically expected to make geometric assumptions based
on how a diagram appears without being explicitly told about relationships that are necessary to solve
a problem. By the time these students enter high school, they are expected to be able to reason about
an object using only the information they are explicitly told and to not make assumptions based on
how a diagram appears. This change in geometric interpretation of a diagram is consistent with van
Hiele’s (1959) description of sophistication of geometric understanding; younger children are
expected to interpret geometric diagrams as a whole and only later begin to recognize the properties
of geometric objects and their interrelationships. If a student does not recognize that a right angle is a
property of a square, for instance, then marking right angles of diagrams of squares is pointless.
Thus, it is sensible that textbooks for young children would contain the expectation that geometric
diagrams be interpreted based on features as drawn (i.e., it looks like a square, therefore it must be a
square).

However, we found it surprising that high school students are still expected to interpret geometric
diagrams as drawn. Since high school geometry includes formal proofs, for which students are
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typically expected to reason only from given statements, it appears that students are expected to
recognize and distinguish when they are able to make assumptions based on a diagram and when
they are not. Even when students are not expected to assume metrical properties (e.g., an angle is a
right angle just because it looks like a right angle), the students are expected to assume topological
properties (e.g., if it looks like the figure is closed, it is). We wonder how students learn to
distinguish when it is “okay” to make assumptions from diagrams and when it is not.

Interestingly, there was one aspect of reasoning with geometric diagrams that was not shown to
be statistically significantly different from elementary to high school, which was whether diagrams
required deductive reasoning. We expect that had we analyzed subsequent chapters in the high school
textbooks, especially chapters in which students are asked to prove properties of geometric figures,
that there would be more diagrams that require students to deduce new information about a geometric
object from a diagram. Thus, based on this analysis, this shift may occur within the geometry course
in high school.

Among all these dimensions in which reasoning about diagrams is expected to change, we
wonder how aware curriculum authors and teachers are of these changes, and in what ways (if at all)
these changes are communicated to students. We suspect that some of students’ difficulty with
geometry may be at least partly due to an inability to successfully navigate the implicit expectations
of reading of geometric diagrams and we believe that helping students recognize the multiple roles
that diagrams can play in geometry and mathematics is critical for their success.
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Research on learning trajectories in mathematics has grown considerably over the past decade. In
this paper, we contribute to this body of research and present a curriculum-based hypothetical
learning trajectory for middle school algebra. In doing so, we make the visible the process by which
we developed this initial hypothetical learning trajectory, highlighting the considerations, decisions,
and challenges we faced as part of this work.

Keywords: Learning Trajectories, Algebra, Curriculum Analysis
Background

Learning Trajectories in School Mathematics

A variety of definitions of the LT construct exist in the research literature, with substantial
differences in focus and intent (see e.g., Clements & Sarama, 2004; Corcoran, Mosher, & Rogat,
2009; Confrey, 2008; Simon, 1995). According to the Consortium for Policy Research in Education
(CPRE) Report on Learning Progressions for Mathematics (Daro et al., 2011), LTs are empirically
grounded and testable hypotheses about how, with appropriate instruction, students’ understanding
of, and ability to use, core concepts and explanations and related practices grow and become more
sophisticated over time (National Research Council, 2009). These hypotheses describe the pathways
students are likely to follow to develop mastery of core concepts. Specifically, in our work we
ascribe to the definition of LT proposed by Confrey et al. (2008): A researcher-conjectured,
empirically-supported description of the ordered network of experiences a student encounters
through instruction (i.e., activities, tasks, tools, forms of interaction and methods of evaluation), in
order to move from informal ideas, through successive refinements of representations, articulation,
and reflection, towards increasingly complex concepts over time. We further ascribe to the idea of a
conceptual corridor (Confrey et al., 2009), which incorporates the possibility of multiple pathways
toward learning, as well as attention to the landmarks and obstacles that students typically encounter
along those pathways.

Approaches to Learning Trajectory Development in Mathematics

In the mathematics education community, LT researchers differ in how they conceptualize LTs,
including the grain size of descriptions of levels of student thinking, how students move among the
levels, and ways in which LTs are validated (Confrey, Maloney, Nguyen & Rupp, 2014). Such
conceptual differences also include different approaches to LT development. For example, Clements
and Sarama (2014) begin with mathematical goals or big ideas that are derived from both empirical
research and expertise from mathematicians. From the mathematical goals, they develop cognitive
models of student thinking based on theoretical and empirical models, and then move to developing
tasks that are designed to promote student learning at different levels. Similarly, Lehrer, Kim, Ayers
and Wilson (2014) begin with descriptions of student thinking that are based on empirical studies,
extant research and mathematical expertise, which are coordinated into different levels of knowledge.
From these descriptions, Lehrer et al. (2014) develop means of supporting changes among
knowledge levels, to support student thinking, including instructional activities. Still, Confrey et al.
(2014) begin with a synthesis of relevant research together with clinical interviews with students and
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teaching experiments in classrooms. While such approaches offer different insights into pathways of
student thinking, such approaches often do not include the tools and resources teachers use everyday
to plan for and enact instruction, such as curriculum materials, as a central component of the LT
conceptualization. Indeed, teachers regularly use curriculum materials to determine the mathematics
they are going to teach, which has considerable implications for pathways of student thinking.

An Alternative Approach to Learning Trajectory Development

In our work as part of the iFAST Project, we use mathematics curriculum materials as the starting
point for articulating a hypothetical LT. Briefly, the iFAST Project is a multi-year project focused on
articulating LTs in middle school algebra to inform the design of LT-based professional development
for teachers. Thus, two main components of our work on the project involves understanding students’
learning pathways within middle school algebra, and enhancing teachers’ understanding of LTs to
inform their use of effective assessment practices in the classroom. A central premise underlying our
work is that high quality formative assessment practices depend on teachers having a clear sense of
learning goals, student LTs, criteria for locating students along the trajectories, sharing this
information with students, and using it to inform instructional decisions.

The development of proficiency in algebra holds a unique role in students’ success in
mathematics, serving as a gatekeeper to more advanced mathematics and affecting mathematics
achievement in high school and beyond. The Common Core State Standards for Mathematics has
reconfigured the sequencing of algebra content across grade levels, introducing it in Grades 6 and 7
with a major focus in Grade 8, and calls for students to learn algebra earlier and to more advanced
levels than has traditionally been the case. As a result, whether or not middle school mathematics
teachers are teaching a course designated as Algebra 1, they are being held accountable for all
students’ learning of rigorous content related to strands in algebraic functions and equation-solving.
In the iIFAST Project, our learning trajectory work is centered on linear functions and linear
equations topics in middle school algebra.

We focus on the Connected Mathematics Project 3 (CMP3) curriculum as it is widely used and
the treatment of linear functions and equations topics is consistent with other functions-based
curricula in the U.S. As our main focus is understanding students’ learning pathways within CMP3,
we needed first to generate a map tracing the hypothetical learning opportunities of algebra concepts
embedded in the curriculum. Of course, this is only a hypothetical description as the actual learning
opportunities students encounter are mediated by multiple other factors (e.g., school, teacher,
implementation, etc.). Thus, our approach stands in contrast with other approaches in least two ways:
it is specific to CMP3 and we generated a hypothetical learning map first. In the sections that follow,
we describe the process we developed to generate such a map and make visible the process by which
we developed a curriculum-based hypothetical LT for middle school algebra.

Articulating a Hypothetical Learning Trajectory

Initial Considerations

As we embarked on understanding what students seem to learn and what are the remaining
obstacles, the need to understand what learning pathway was intended for students to follow in the
curriculum became evident. In order to map the opportunities provided by the curriculum to learn
about specific algebra concepts we had to devise a process to understand and represent them. We
wanted to produce a map of such opportunities as presented in the curriculum, thus we decided to
start working with the unit goals provided by the curriculum materials.

Our initial intent was to map all linear functions and equations related topics within CMP3. This
task proved to be too ambitious. As such, we narrowed our focus to what we considered to be a high
leverage topic within the linear functions and equations domain. We focus on the transition from
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proportional to non-proportional linear functions, with a particular emphasis on rule writing. Thus,
we selected units (i.e., focus units) that focus on proportionality, functions, proportional functions
and linear functions. Within CMP3, we selected the following units: Grade 6 — Comparing Bits and
Pieces, Grade 6 — Variables and Patterns, Grade 7 — Comparing and Scaling, Grade 7, Moving
Straight Ahead, Grade 8 — Thinking with Mathematical Models, and Grade 8 — Say It With Symbols.
The first challenge we faced in creating this map was to come up with a useful grain size to
describe the new content that students were offered an opportunity to learn about. We first
considered working directly with the goals corresponding to focus units, but a map spanning across
Grades 6-8 turned out to be too busy and difficult to be used by other researchers and teachers.
Therefore, we decided to group unit goals that could be linked by a common mathematical theme.

Generating a Curricular Map

This following process is presented in a distilled way but it took several attempts for it to emerge
to address limitations and implement desired improvements. We will try to note some of these back
and forth in the process of coming up with the final process of clustering. The first challenge we
faced in creating this map was to come up with a useful grain size to describe the new content that
students were offered an opportunity to learn about. We first considered working directly with the
goals corresponding to focus units but a map spanning throughout the three years grades 6-8 turned
out to be too busy and difficult to be used by other researchers and teachers. Therefore, we decided to
group unit goals that could be linked by a common theme. We referred to this process as
“clustering”. A preceding crucial step was to assign to each lesson problem unit goals.

Clustering process. One focus unit at a time, three researchers first independently clustered goals
into clusters; second, researchers identified discrepancies and discussed the clusters by looking both
at the representative lesson problems and the goals as stated in the curriculum until an agreement was
reached. We iterated this process throughout all focus units.

External validation of clustering process. Once the researchers had completed the clustering
process for all focus units, we convened a group of external reviewers (comprised of mathematics
education researchers with familiarity with algebra and CMP) who conducted an external validation
of the clustering process. This work entailed: (1) assessing the relationship between lesson problems
and assigned goals, (2) assessing how the goals were group together forming a cluster, and (3)
assessing whether the lesson problems selected were considered representative. External reviewers
agreed with most of our work, they provided some minor suggestions for us to consider. One of the
main contributions of this round of feedback pushed our team to think about the representative
problems in two different lights. One as an exemplary lesson problem where students have the
opportunity to learn and laser in a concept vs. lesson problems that would afford the most learning
opportunities in the limited time an after-school professional development workshop affords, for
example.

Connecting Clusters Across Grade Levels

Thus far in the process, we had goals, clusters and representative lesson problems at the unit level
without an explicit connection across units and grades. In connecting the clusters among themselves
two unforeseen processes unfolded: (1) in order to be able to express successive refinement in a
trajectory we found it necessary to refine the language of the cluster, and (2) we revised some of the
clusters and re-grouped them. Several elements were used in coming up with the curricular map
across grades. The main organizing element is time, clusters are organized in columns according to a
specific grade moving from 6" grade on the left to 8" grade on the right. Within a specific column
(grade), we followed the order of the units chronologically according to the curriculum. To organize
clusters and decide how they relate to each other we made decisions by looking at the representative
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problems, the goals and clusters; we pay specific attention to successive refinement of a same
concept.

Discussion & Conclusion

Generating a curriculum based hypothetical trajectories map was a necessary step in our
approach, as we set out to describe students’ levels of understanding on proportional and linear
functions taking into account what learning opportunities were provided by the curriculum chosen by
the district. We think that this might provide a more nuanced picture as it not only takes into account
the common core standards and extant research but also the opportunities students had to learn from
the chosen curriculum. The ultimate goal of the project is to generate a CMP3 curricular map with
levels of understanding (i.e., ranging for most proficient to incorrect) for each cluster. We have
designed a set of three instruments to do this: end of unit assessments, end of year assessment, and a
pre and post-assessment. These instruments differ on multiple aspects from each other (e.g.,
constructed response/multiple choice, content specific/non-specific to a unit/grade, etc.) but a
detailed description of those exceeds the scope of this paper. By putting in relation the CMP3 HLT
Map together with the multiple data sources we will be able to identify, describe and illustrate both
levels of understanding as expected by the layout of the curriculum as well as “out of trajectory”
levels of learning. The “out of the trajectory” learning might occur given the spiral nature of cmp3
where concepts are revisited at several later instances across those three years. In putting forward this
process, we hope other researchers can replicate it by researchers to generate a map for other
curriculums.
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In this research report, we examine the perceptions that parents have regarding the use of multiple
strategies in their children’s classrooms, and then align their perspectives with the research
literature. The themes of adaptivity and flexibility of strategies, conceptual and procedural
knowledge, disposition and identity, implementation of multiple strategies, and the lack of
effectiveness for all students were found in the literature as well as within the parent comments.
Some of the parents produced counter-examples from the literature based on their experiences with
their own children. By understanding the varying notions that parents (and the literature) have about
the use of multiple strategies in mathematics, we can begin to create a way to have productive
conversations with parents about curriculum reform.

Keywords: Curriculum, Elementary School Education, Number Concepts and Operations, Problem
Solving

Introduction

But the fact is there isn’t great research behind it. And the other fact is that ... students who are
coming out of learning these strategies—the math scores have weakened. Because I’m all for
doing a different strategy if you have proof that that strategy is even better than what we’ve been
doing all along. However, at the end of the day the scores indicate that, no, it hasn’t been the best
approach to teaching math.

The comment above describes a tension expressed by many parents regarding current
pedagogical practices that emphasize multiple strategies for problem solving and computation. The
general curriculum expectations are for students to have opportunities to develop procedural
flexibility and conceptual understanding through the process of selecting and using appropriate
strategies in novel situations (e.g., National Council of Teachers of Mathematics, 2000).

The benefits of a multiple strategy approach have often not been accessible to or understood by
parents. While parents, such as the mother quoted above, may reject that this pedagogical approach is
best, the literature itself is not universally supportive of multiple strategies. In this paper, we
investigate parents’ perceptions of the value of alternative strategies in supporting children’s learning
of mathematics and how these perceptions are aligned with research. Our ultimate goal in doing this
analysis is to identify fruitful ways to engage in productive conversations about mathematics
curriculum reform with parents.

This report relates to the conference theme of research “as an intersection” by creating a path for
researchers, teachers, and parents to be on the same road or conversation. It also addresses the
conference theme of research “as a barrier” by examining the discourse used by parents surrounding
the use of multiple strategies in mathematics classrooms and the impacts that these perceptions have
on the parents’ thoughts and feelings about how their children are learning.
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Theoretical Framework

Within the literature, the rationale for teaching students multiple strategies is multifold. First, it
has long been believed that such an approach supports the development of strategy adaptivity; that is,
the ability to flexibly and creatively apply or generate an appropriate solution strategy to solve a
given mathematics problem (Hatano, 1982). Second, teaching students multiple strategies is intended
to enhance conceptual and procedural knowledge of number (Rittle-Johnson & Schneider, 2014). An
awareness of various solution strategies is often associated with deeper conceptual understanding of
how these strategies are used (e.g., Verschaffel et al., 2009). Also, students who develop and use
procedures flexibly are more capable of using and adapting existing procedures when faced with
unfamiliar problems (e.g., Blote et al., 2001). A third rationale in the literature is that multiple
strategies cultivate appropriate attitudes towards math. This potential influence on disposition has,
for example, been documented in Boaler and Selling’s (2017) longitudinal study of two contrasting
mathematics teaching practices (project-based vs. traditional) and their impact on students’ identity
and expertise in mathematics during their adulthood.

Is teaching multiple strategies feasible and valuable for all students? First, some research studies
suggest that a multiple strategies approach may exacerbate the difficulties of low achieving students.
Poorer working memory or other learning difficulties suggest that the goal of developing student
adaptivity might be of limited value. Auer, Hickendorff, and Putten (2016) found that “lower ability
students made counter-adaptive choices between the two strategies” by choosing a strategy that led to
inaccuracies (p. 52). Second, exposing students to multiple strategies early may promote positive
dispositions, but delaying exposure to multiple strategies may lead to greater adaptivity (Rittle-
Johnson & Schneider, 2014). Their study indicated that flexibility in use of procedures was higher
than the students in the delayed-exposure condition. Third, as Silver et al. (2005) note, although it is
well accepted that students need experiences solving problems in more than one way, it is difficult to
operationalize. The possible obstacles math teachers face include the actual and perceived limitations
in teachers’ mathematical knowledge, limited instructional time, restrictive conceptions of student
ability, and a lack of opportunity to develop instructional routines related to teaching multiple
solutions.

The parents in our study expressed a range of benefits and also disadvantages of their own and
their children’s experiences with a multiple strategies pedagogy. Parent perspectives are important
because their involvement in children’s educational experiences has far-reaching benefits such as
improving achievement, increasing motivation, and reducing anxiety (Pattall, Cooper, & Robinson,
2008). Understanding parent perspectives and how they are or are not aligned to research allow
researchers and teacher educators to refrain from dismissing criticisms as obstacles, and reconsider
the validity of parent perspectives—even if they are based on a sample size of 1: their child.

Mode of Inquiry

Forty parents from urban and rural communities participated in our study. They completed a
demographic questionnaire and participated in one of ten focus groups taking place in their
respective communities. Focus groups, each approximately two hours long, were used as generative
sites of data collection with the knowledge that differing parent perspectives required participants to
explain their perspective to others, thus allowing us to notice differences in their experiences. The
focus groups were structured to prompt parents to address their observations of their child’s learning
and the curriculum; compare their own mathematics schooling with their children’s; describe their
interactions when helping their child with mathematics at home; provide expectations about their
child’s mathematics learning; and describe communication received with the school and teacher
about mathematics curriculum. Follow-up interviews were conducted with a subset of the parents
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(15) in the focus groups to allow them to expand on and further clarify their comments from the
focus group.

A common topic of discussion identified in the focus groups were parents’ perceptions related to
multiple strategies and alternative algorithms (see McGarvey & McFeetors, 2016). In the focus
groups and interviews, the parent participants referred to a multiple strategies approach over 400
times. In this paper, we focus specifically on this large sample of comments using a thematic analysis
(Braun & Clarke, 2006) of the focus group data using individual utterances as a unit of analysis.
Through a constant comparative approach in sorting statements made by the parents in the focus
groups, we identified key assertions in relation to the participants’ perceptions of the role of multiple
strategies in their children’s learning of problem solving and computation. In the results, we explicate
the ways in which parents make sense of alternative algorithms in their children’s learning.

Findings
In Table 1, we highlight the range of themes we identified related to parents’ perspectives of

multiple strategies along with sample comments.

Table 1: Parent Perspectives on Multiple Strategies

Theme Assertions from Parents

Adaptivity and The answer is because once problems get more complicated, you might
flexibility of strategies | not know them at first sight. So you have to learn all the different
strategies, that’s why I think they teach all the different strategies because
once it’s more complex, it’s like algebra and things like that. You need to
know different ways to get the answers, ways that makes sense to you.

Wouldn’t you rather be really good at one than kind of mediocre at five?

Conceptual and They wanted them to understand the concept of all of the strategies and
procedural knowledge | then pick the ones that worked better for them.

Disposition and My middle son with ADHD has his problems. He would never be able to
identity memorize .... It takes him a little while because he's slower and needs to

focus, but he can use the strategies that he likes, which is not the standard
algorithm, but he can figure it out.

If she has to use the 15 different methods, then she sort of spirals out [of

control].
Implementation of There’s this disconnect that they [teachers] think that they have to teach
multiple strategies all of those ways and they [children] have to do them all of those ways.

And we have to give it to them over and over and over again. Even if it
doesn’t work for them.

I wish the teacher had had a better answer to that question. And I wish the
teacher had known why she was teaching it those ways. I don’t know if
she knows.

Not effective for all You have all of these strategies and you know having your child draw 90
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students (both low and | ticks on, you know paper, that’s where you’re wasting your children’s
high achieving) time ... in four or five different strategies you never allow them to master
a particular method.

She's not a drawer, she hates art. We were focusing more time on drawing
pizza cones and all these things that had to do for these worksheets that
were coming home, and coming up with a strategy name, that we weren't
actually doing math.

If there’s, you know, 75% of children learn the best how we learned it
growing up, why change it? And if those 25% or 20% or 15 or 10% are
having troubles, then let’s implement those strategies for those children
instead of for broad all.

Conclusion
We note that parents did not necessarily view a multiple strategies approach from only one
perspective. Instead, they often included multiple perspectives within one statement. In addition,
although we provided here both the benefits and challenges to a multiple strategies approach as
described in the literature, parents often provided counter-examples based on their perspectives that
are important not to ignore.
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This brief research report outlines a study of College Preparatory Mathematics (CPM) student
curriculum materials to determine how language features of mathematical tasks position students to
develop aspects of agency, autonomy and identity as learners of mathematics. I make a case for why
1 think these three attributes are important for mathematics learning, and I use analytic tools from
Systemic Functional Linguistics to explore opportunities students have to develop agency, autonomy
and identity when working on mathematical tasks in CPM textbooks.
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Purpose of Study

The study investigates ways that language used in selected College Preparatory Mathematics
(hereafter, CPM) mathematical tasks positions students to experience aspects of autonomy, agency
and a sense of identity as learners and doers of mathematics. Agency, autonomy and identity are
important because research (e.g. Lester & Cai, 2016) seems to indicate that students should be given
more opportunities to rely more on themselves as they work on challenging mathematical tasks.
Challenging mathematical tasks often have a high level of cognitive demand (Stein et al., 2000) and
are often non-routine. Whether students of mathematics operate individually or with other learners in
groups as they work to solve non-routine problems during lessons, it can be argued that they are
required to assume greater control of the problem-solving process, independent of their teacher. By
taking greater control of their learning, students are in essence being autonomous and engaging in
agentic learning. I am interested in the CPM curriculum because it is an instance of problem-based or
problem-centered learning. This form of learning often involves learning mathematics by working on
complex and open-ended problems which are typically ill-structured so as to allow for several
possible approaches and answers (Hmelo-Silver, 2004). Problem-based learning can provide learners
of mathematics with opportunities to develop agency, autonomy and identity as doers of
mathematics. Studying language used in mathematical tasks in CPM textbooks can inform research
on how students are positioned to develop agency, autonomy and identity as l